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1. Summary 
 

1.1 Systems Factorial Technology with R 
 
A portion of the effort to date has been dedicated to the development of an open source implementation of systems 
factorial technology (SFT) measures and models within the R for statistical computing framework and language. SFT is 
one methodology utilized in this research for making inferences about human information processing mechanisms 
utilizing response time data. The first version of the package (sft 0.1) was released in 2012; we published a tutorial paper 
on utilizing SFT, its associated experimental methodology, the double factorial paradigm, and the basic functionality in 
the sft package (Houpt, J.W., Blaha, L.M., McIntire, J.P., Havig, P.R., & Townsend, J. T., 2013, Systems factorial 
technology with R. Behavior Research Methods [online publication doi 10.3758/s13428-013-0377-3). Additional research 
efforts have both contributed new theory to the SFT framework, but have continued to increase the functionality of the sft 
toolbox to include new measures. The second major release of the sft package (version 1.0-1) was made in November 
2012, accompanied by a presentation of the new functions at the 2013 Society for Computers in Psychology Meeting. The 
latest update, 2.0-7 was released in October 2014. A companion tutorial paper on the new functions is currently under 
revision. 
 
(Houpt, J. W., Blaha, L. M., & Burns, D. M. (under revision). Latest developments in systems factorial technology with 
R.) 
 
 
1.2 Models of Opinion Dynamics 
 
Dimer automata models provide a framework for modeling information dynamics of complex systems represented as 
networks. Several simulation studies were run exploring the ability of two- and three-state dimer automata systems to 
capture opinion dynamics (also termed innovation diffusion) and influence maximization in different networks. 
Simulation experiments examined different networks structures, the influence of zealotry on the dynamics, and strategies 
for the placement of zealots in the network for maximum influence on the final opinion states. Initial experiments were 
presented at the 2013 Behavior Representation in Modeling and Simulation conference, and additional experiments were 
included in an article published in 2015. 
 
(Arendt, D. A. & Blaha, L. M., (2015) Opinions, influence and zealotry: A computational study on stubbornness. 
Computational & Mathematical Organization Theory, 21(2), 184-209 [invited paper]). 
 
 
1.3 Generalized n-Channel Capacity Space 
 
Theoretical progress was made in the area of parallel models of response time by the formulation of generalized bounds 
on the capacity coefficient values predicted by standard parallel processes with n≥2 channels in the system. Previously, 
general n-channel bounds (upper and lower) on the range of cumulative distribution functions for standard parallel models 
had been defined for minimum time, single-target self-terminating maximum time stopping rules. Relatedly, capacity 
coefficient ratios had been defined for the same three stopping rules. Because the capacity coefficients are formulated by 
logarithmic transformations of the cumulative distribution functions, we can redefine the bounds to provide upper and 
lower limits on the capacity coefficient functions directly. These capacity space bounds were derived and proven in an 
article published in 2015. 
 
(Blaha, L. M. & Houpt, J. W. (2015). An extension of workload capacity space for systems with more than two channels. 
Journal of Mathematical Psychology, 66, 1-5.) 
 
 
1.4 The Points to Pixels Pipeline (P2P2) 
 
In order for patterns to be found in and for meaningful information to be extracted from high dimensional or complex 
network data, easy to use and manipulate visualization tools are needed for data exploration. We developed an open 
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source framework for performing simplex clustering and visualizing data for visual analytics purposes. Data can be fed 
into the pipeline framework as either the raw multivariate measures, a (dis)similarity matrix computed from that data, or 
as a graph of network-type data. From any of those formats, the appropriate transformations of the data are made and then 
a simplex is derived. The parameters governing the computations are easily manipulated by the user. And a set of easy 
visualizations are created by fitting a convex hull to each clique or cluster in the data and projecting that into lower 
dimensional space, augmented by color coding. By utilizing a set of free, open source (Python based) toolboxes, the P2P2 
framework is easily utilized by any researchers without need for specialized software or expensive licensing. 
 
(Arendt, D. L., Jefferson, B., & Su, S. (in preparation) The Points to Pixels Pipeline (P2P2): and open source framework 
for multivariate, similarity, and network data visualization.) 
 
 
1.5 SIMCog-JS: Simplified Interfacing for Modeling Cognition – JavaScript 
 
Computational cognitive architectures have been limited in their application scope to post-experimental analysis or near 
real-time simulation separate from human operators. We propose that cognitive models could be used as real-time 
monitoring tools if they could execute a task simultaneously with the human operators. To enable this, we developed a 
client-server software architecture, Simplified Interfacing for Modeling Cognition – JavaScript (SIMCog-JS). This was 
implemented in JavaScript and employs websockets to enable communication between the Java ACT-R cognitive 
architecture and a JavaScript user interface. This software is available open source at http://sai.mindmodeling.org/simcog. 
A conference proceedings paper was published in 2015 at the International Conference on Cognitive Modeling. 
 
(Halverson, T., Reynolds, B., & Blaha, L. (2015). SIMCog-JS: Simplified Interfacing for Modeling Cognition - 
JavaScript. Proceedings of the International Conference on Cognitive Modeling, Groningen, The Netherlands, April 9-11, 
39-44.) 
 
1.6 Modeling the Workload of Capacity of Visual Multitasking 
 
We are extending the application of the capacity coefficient to multiple, simultaneously executed visual decision making 
tasks, which we refer to as visual multitasking. The initial testbed for this extension is an open-source JavaScript 
implementation of the modified Multi-Attribute Task Battery (mMATB; available online at 
http://sai.mindmodeling.org/mmatb). We presented initial results showing that two tasks can boost processing capacity, 
but moving to four tasks results in limited capacity processing on all tasks. Preliminary findings were published in the 
2015 International Conference on Cognitive Modeling proceedings. 
 
(Blaha, L. M., Cline, J., & Halverson, T. (2015). Modeling the workload capacity of visual multitasking. Proceedings of 
the International Conference on Cognitive Modeling, Groningen, The Netherlands, April 9-11, 37-38.) 
 
 
1.7 ACT-R and LBA Model Mimicry Reveals Similarity Across Levels of Analysis 
 
Computational and mathematical cognitive models have trade-offs in their implementations of explicit cognitive 
mechanisms and their mathematical tractability. This effort compared a mathematical sequential sampling model, the 
Linear Ballistic Accumulator (LBA), and a computational cognitive model programmed in the cognitive architecture 
Adaptive Control of Thought - Rational (ACT-R) of a simple detection task, the psychomotor vigilance task. We found 
that both provided good-fitting explanations of empirical data. Relationships were found between parameters. This 
enables future modeling to leverage the mathematical tractability of the LBA for fitting data and relationships between 
parameters to leverage the mechanistic explanations afforded by the computational cognitive architecture for 
understanding task behaviors in human observers. Areas for further theoretical development were identified. This work 
was published in a conference proceeding paper in 2015. 
 
(Fisher, C. R., Walsh, M., Blaha, L. M., & Gunzelmann, G. (2015, July). ACT-R and LBA model mimicry reveals 
similarity across levels of analysis. 37th Annual Conference of the Cognitive Science Society, Pasadena, California.) 
 
 

http://sai.mindmodeling.org/downloads/HalversonetalSIMCogICCM2015Final.pdf
http://sai.mindmodeling.org/downloads/HalversonetalSIMCogICCM2015Final.pdf
http://sai.mindmodeling.org/downloads/HalversonetalSIMCogICCM2015Final.pdf
http://sai.mindmodeling.org/downloads/BlahaClineHalverson_ModelingWorkload.pdf
http://sai.mindmodeling.org/downloads/BlahaClineHalverson_ModelingWorkload.pdf
http://sai.mindmodeling.org/downloads/FisherWalshBlahaGunzelmannCogSci2015.pdf
http://sai.mindmodeling.org/downloads/FisherWalshBlahaGunzelmannCogSci2015.pdf
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1.8 Exploring Individual Differences via Clustering on Capacity Coefficients 
 
Capacity coefficient analyses are performed at the individual participant level of data. In order to make inferences about 
groups or patterns within groups of participants, researchers have had to rely on visual inspection and qualitative 
descriptions. We present an approach for using functional principle components analysis to map all participants into a 
common vector space for machine learning analysis. We demonstrate how clustering can identify subgroups within the 
data that might relate to experimental manipulations or to participant population characteristics (age, diagnosis, etc.). This 
provides a set of tools for quantitative descriptions of individual differences in capacity coefficient data. Aspects of this 
technique were published in a 2015 conference proceedings paper; the full technique will appear in a book chapter in 
2016. 
 
(Houpt, J. W. & Blaha, L. M. (2015, July). Exploring individual differences via clustering on capacity coefficients. 37th 
Annual Conference of the Cognitive Science Society, Pasadena, California.) 
 
(Blaha, L. M. & Houpt, J. W. (2016, anticipated). Combining the capacity coefficient with statistical learning to explore 
individual differences. In Mathematical Models of Perception and cognition: A Festschrift in honor of James T. 
Townsend (J. W. Houpt & L. M. Blaha, Eds.). Psychology Press.) 
 
 
 
2. Manuscripts from the Current Effort 
 

Included in the following pages are drafts of manuscripts based on the efforts described above. Each of these are 
embedded images from a pdf document that was typeset in LaTeX. For documents 1.5-1.8, clicking on the pdf embedded 
in this document will open the pdf. 

 
 

http://sai.mindmodeling.org/downloads/HouptBlahaCogSci2015.pdf
http://sai.mindmodeling.org/downloads/HouptBlahaCogSci2015.pdf
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LATEST SFT WITH R 3 

Abscract 

Systems factorial technology (SFT) is a powerful a nd mathematically rigorous framework 

for studying how cogn it ive systems make use of mult iple sources of information. Art icles 

about SFT tend to focus on the mathematics and development of t he theory, making them 

inaccessible to many researchers. The s ft package for R was recently introduced to 

facilitate the use of SFT by a wider ra nge of researchers. T he origina l package contained 

tools implementing only the basic theoretical tools. In the last few years, there have been a 

number of advances to SFT, which we will review, and we introduce their implementation 

in t he s ft package. In part ic ula r, we will demonstrate R functions for fu nctiona l pri ncipal 

components a nalysis of the capacity coeffi cient (Burns, Houpt, Townsend, & E nd res, 2013), 

ca lculating a nd plott ing assessment functions (Townsend & Altieri, 2012), and calculating 

a nd plotting distribut iona l bounds in a unified capacity space (Townsend & Eidels, 2011). 

Addi tionally, we expa nded the package to incl ude a function for t he new capacity 

coefficient for single-- target self- terminating (ST-ST) processing (Blaha, 2010) , as well as 

fu nctions support ing t he plotting of cumulative distribution funct ion bounds on t he 

predictions of standard parallel processing models for minimum time, maximum time, and 

ST-ST decision rules. 
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LATEST SFT WITH R 4 

Latest Developments in Systems Factorial Technology with R 

Intt·oductio n 

Systems Factorial Technology (SFT) is a framework for analyzing how multiple 

sources of information are used together in cognitive processing. Although the tools are 

quite powerful and broadly applicable, they can be inaccessible, or at least daunting, to 

psychology researchers. Houpt, Blaha, Mcintire, Havig, and Townsend (2013) introduced 

an R (R Development Core Team, 2011) package to implement the basic measures a nd 

statistical a nalyses. However, SFT continues to advance and more tools continue to 

become available. In this article we give an overview of the new theoretical advancements 

in the SFT framework and describe their use and implementation in the sft R package. In 

particular we focus on four advances from the last few years: the single-target 

self-terminating (ST-ST) capacity coefficient (Blaha, 2010; Bla ha & Townsend, under 

review), the unified workload capacity space measures (Townsend & Eidels, 2011), 

functional principal components analysis (fPCA) of the capacity coefficient (Burns et al., 

2013), and the workload assessment functions (Townsend & Altieri , 2012). 

We wil l begin with an overview of workload capacity in SFT to give readers who may 

be Jess familiar with the topic a foundation for the rest of the paper. This overview is brief 

and meant only to give readers the basic details needed to use these new analyses. We 

encourage readers wanting further details to read the SFT wit h R paper (Houpt et al., 

2013) or some of the original papers on workload capacity in SFT and on the capacity 

coefficient (Townsend, 1974; Townsend & Ashby, 1983; Townsend & Nozawa, 1995; 

Townsend & Wenger, 2004; Wenger & Townsend , 2000) . 

F irst, a brief note on our notation. When we refer to the R package for the 

implementation of SFT theory, we will use sft. Any R code itself, like function names or 

input arguments, will be typeset as follows: function or input. argurnent= value. 
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LATEST SFT WITH R 5 

Workload Capacity and t he Capacity Coeffici ent 

With in SFT, workload capacity refers to a change in information processing 

performance as the number of information sources change. T he original defin it ions focused 

on processing speed as measured by response times. Some of the recent generalizat ions 

discussed in this paper a nd implemented in the latest version of the R package include 

response accuracy as well. In this section we will focus on t he response time only approach, 

then d iscuss t he genera lization in the Assessment Function section . 

In most cases, a system takes longer to finish the more it has to do. However , j ust 

because a system takes longer to respond when it is required to process more sources of 

information, it does not mean that a ny of tbe ind ividual information sources are processing 

at a slower speed. Likewise, when there is redu ndant information ava ilable, tbe overall 

processing speed being faster does not mean that the processing of a ny individua l source is 

faster. For example, in parallel processes wit h redunda nt information, faster processing 

t imes may be due to statistical facili tat ion (Raab, 1962; Miller, 1982) . Statistical 

facilitation refers to t he fact that the minimum over a set of more than one ra ndom 

variable (i.e., source processing t imes) tends to be smaller than any of t he individual 

random variables. Statistical inhibit ion refers to the a na logous phenomenon when a ll 

processes must finish: the maximum of multiple ra ndom va riables tends to be larger than 

any of the ind ividual ra ndom variables. T hus, if all we can measure is a person's response 

t ime with one or more sources of information present, and not the individual processing 

t imes of each source of information when mu lt iple sources a re aV'd.ilable, it is important to 

compare the times against an appropriate baseline. 

The baseline for tbe capacity coefficient in redundant target tasks is the 

unlimited-capacity, independent, parallel, first- terminating model (Townsend & Nozawa, 

1995) . We use the in itialism UCIP for the fi rst three assumptions and OR to refer to 

fi rst-term inating (in reference to a logical OR decision rule) . Because it is first-te rminating, 

the model is finished as soon as any of the individual target processes have completed. 
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LATEST SFT WITH R 6 

Equivalently, t he model bas not yet finished only if none of t he ind ividual target processes 

have finished, 

Pr{TuciP- OR > t} = Pr{Tt > t, . .. ,T,.. > t}. 

We can use 1i to refer to t he processing time for the ith target regard less of whether there 

are other sources present due to the unlimited capacity assumption. Using the 

independence assumption, we can split the right side into a prod uct, 

Pr{T1 > t , ... ,T,, > t} = Pr{T1 > t} x · · · x Pr{T,, > t}. 

We can rewri te this equali ty more succinctly using survivor functions, 

S(t) = 1 - F(t) = Pr{T > t}, 

SucJP-OR.(t) = s.(t) X •.. X Sn(t) 

where F(t) = P r{T :::; t} is the cumu lative distribution function. Lower survivor functions 

correspond to faster processing t imes. To translate this ident ity to cum ulative hazard 

functions we use H(t) = - log S(t), so we see t hat larger cumulative hazard functions 

correspond to faster processing t imes. 

The cumulative of the hazard function is convenient for statistical purposes and has 

the nice interpretation as the amount of work completed by the cognitive processing system 

in t amount of t ime. We take the natural logari thm of both s ides of the previous equation 

to arrive at the baseline prediction of the UC!P-OR model in terms of cumulative hazard 

functions, 

HuciP- OR(t) = Ht(t) + · · · + Hn(t). 

The capacity coefficient is a ratio function comparing this UCIP model baseline to 

observed performance. Let C = { 1, ... , n} denote the set of n active channels in an 

experi ment. Using this set notation, we denote the empirical response t ime cumu lative 

dist ribution function (CDF) on an OR task as Fc(t) = P [minc(Tc):::; t], for a ll real t;:::: 0 

and c E C. The corresponding empirical cumulative hazard function is denoted Hc(t). The 
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LATEST SFT WITH R 7 

capacity coefficient for tasks in which a fi rst-terminating decision ru le is expected is given 

by the ratio of cumulative hazard functions of response t imes when all n targets are present 

to t he sum of cumulative hazard functions of response t imes for cases when each of t be n 

targets is present in isolation, 

CoR(t) = Hc(t) 
HucrP- on(t) 

Hc(t) 
(1) 

H1(t) + · · · + H.,(t). 

The baseline of UCIP-OR processing is est imated in the denominator, so if the performance 

measured when all targets sources are present is better than t he estimated baseline, then 

CoR(t) > 1. Likewise, worse tha n baseline performance would be indicated by CoR(t) < 1. 

The same logic can be used to derive the baseline for tasks in which the participant 

can on ly respond when all sources of information have been processed, i.e. exhaustive or 

AND tasks. For the UCIP-AND model to finish, it must finish processing all sources of 

information, 

Pr{TucrP-AND :::; t} = Pr{ T1 :::; t, . . . , T.. :::; t} 

FucrP-ANo(t) = F1(t) X ·· · X Fn(t) . 

In terms of the cumulative reverse hazard function, K(t) = logF(t), 

KucrP- ANo(t) = I<1(t) + · · · + I<n(t) . 

Lower CDFs correspond to slower processing, so lower cu mu lative reverse hazard functions 

correspond to worse performance. Because F{t) is between 0 and 1, the logarithm of F(t) 

is always negative, so lower values correspond to larger magni tudes. Hence, to keep the 

interpretation of C(t) > 1 corresponding to better t han baseli ne, the AND capacity 

coefficient is flipped, 

c . ( ) - I<l (t) + ... + I<,.(t) 
AND t - J<c(t) · 

Note that for the observed performance in an AND task, we use t be response t ime CDF 

Fc(t) = P [ mau'<c(T~) :::; t], for all real t 2:: 0 and c E C, and we denote the cumulative 

(2) 
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LATEST SFT WITH R 8 

reverse hazard function I<c(t) . T he baseline is now represented in t he numerator, so larger 

magnit ude cumulative reverse hazard functions for response times to a ll sources of 

information (the denominator) indicates worse t han baseline performa nce a nd leads to 

CANo(t) < 1. Likewise, better performance than the baseline leads to CANo (t) > 1. 

Experimentally, workload capacity analysis can be used on a ny tasks t hat require an 

AND or OR type of decision (and now single-target self-terminating, as we will expla in 

below) and that utilize a man ipu lation tbat involves judgments on d ifferent numbers of 

information sources. T here are two specific work load ma nipulations needed to ut ilize 

Equations 1 and 2. The fi rst is a set of single information source trials t hat allow t he 

estimation of the individual cha nnel response t ime d istribut ions. This is required for the 

UCIP baseline model estima tes. T he second necessary condition is one in which all the 

sources of informat ion are presented together, to estimate the actual cognitive processing of 

n active channels. For more on t he experimental manipulations for capacity a nalysis, 

part icularly in t he context of the double factorial parad igm, see Houpt et al. (2013) . 

To make this concrete, imagine a visual or memory search task. In order to estimate 

the UCIP baseline model, participants must complete a series of single-ta rget trials (i.e. 

one item in the search array) with one type of trial for each individual different source of 

information. Par t icipants must a lso complete t ria ls for n items in the search array. If this 

array was a ll targets, t hen pa rt icipa nts would be completing a n OR redunda nt-targets 

task, and t he experimenter would use Equa tion 1 for his a na lysis. If t his array was a ll 

dist ractors, a nd a ll must be searched to determ ine t he target was not present, t ben 

part icipants would be completing an AND task, and the experiment would use Equat ion 2 

for the analysis for those response t imes. 

Funct ions for calculating the tradit iona l capacity coefficients and the associated test 

statistics from (Houpt & Townsend, 2012) are ava ilable in t he sft package a nd described in 

Ho upt et al. (2013) . V•li th t he basics o f workload capacity a nalysis in SFT established, we 

can now summarize the latest developments and their corresponding funct ions in the sft 
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package. 

Single-Targe t Self-Terminating Capacity 

Single-target self-terminating (ST-ST) processing refers to a response rule that sits 

between OR and AND processing. This is the condition where there is a single target of 

interest for the response. When this target is presented a mong other non-target 

information sources in a task, it may be the fi rst or last item processed or somewhere in 

between. However, as soon as t he target is identified , the observer can make a response 

(hence, the nomenclature 'self-terminating'). For example, ST-ST processing is often the 

sliOpping rule dema nded in a visual or memory search task when a single target of interest 

is embedded in a search array of distractors. 

As with AND processing, t he ST-ST capacity coefficient compares performance on a 

task to a UCIP model using cumulative reverse hazard functions (Blaha, 2010; Blaha & 

Townsend, under review). T he UCIP model prediction is the cumulative reverse hazard 

fu nction for response times to t he single target processed in isolation. Let K~c(t) denote the 

response t ime cumulative reverse hazard function for single-target k processed alone. 

Because t he assumptions of the UCIP model are that t he individ ual channel processing 

rates are independent of other channels and do not change as t he tota l number of cha nnels 

changes, t hen 

The cumulative reverse hazard fu nction for processing of t he same single target k 

among n tota l information sources (n - 1 distractors) is denoted Kk,c(t) , where again 

C = {1, .. . ,n} . The latter case is t he higher workload cond ition of interest for workload 

capacity analysis. Taking a ratio of t he UCIP model to t he n-source processing 

performance gives the ST-ST capacity coefficient: 

Kk(t) 
Cs·rs-r(t) = - . - . 

I<k,c(t) 
(3) 
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Sim ilar to CAND(t) , t he nu merator is t he base li ne model, a nd a la rger denominator 

indicates worse t han baseline performance, giving CsTST(t) < 1, which is referred to as 

lim ited capacity processing. Th is ind icates that either there a re lim ited processing 

resources aV'a,ilable, there is in hibit ion among the subprocesses, or the items are not 

processed in parallel (e.g., the items may be processed serially). 

Likewise, better than baseli ne perfo rma nce again leads to Cs-rs-r(t) > 1, which is 

referred to as super capacity processing. T his indicates that either there are more 

processing resources available per process when there are more processes, that there is 

facilitation among the subprocesses, or the items a re not processed in parallel (e.g., the 

items may be processed coactively) . 

10 

Additionally, Blaha and Townsend (under review) showed that a statistical test for 

CsTST(t) is a s pecial case of the statistical test for AND capacity developed by Houpt a nd 

Townsend (2012). T he estimator of t he cumulative reverse hazard function is calculated 

with the estimateNAK function in the s ft package, as covered in Houpt et al. (2013) . 

In the sft R package, the ST-ST capacity coefficient and corresponding statistical 

test (Blaha & Townsend, under review) are calculated by the capacity. stst function. It 

takes as its input a list containing two arrays of response time data. The fi rst array in t he 

list is assumed to be the response times from the single-target self-terminating condition 

wi t h a total of n information sources, and the second array in the list is assumed to be the 

response t imes from the single target processed in isolation (the basel ine estimate) . T he 

second input argument is an optiona l list of arrays of correct ind icators; if t he correct 

ind icators are not provided (CR=NULL), the function assumes t hat all response times are 

from correct responses. 

F inally, t he capacity. stst funct ion includes a n indicator input ratio. If 

ratio= TRUE, then the ratio form of the capacity coefficient (Equation 3) is returned; 

examples of ratio Cs-rs-r(t) fu nctions, simulated for super capacity, unlimited capacity, and 

limited capacity models, are shown in Figure l. If rat i o= FALSE, then the difference fo rm 
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of the capacity coefficient is returned . T he d iffereuce form of the ST-ST capacity coeffi cient 

is given by 

CsTsT(t) = l(~c,c(t)- Kk(t) . (4) 

For the difference form of Cs·rsT(t), the reference value for unlimited capacity processing is 

0 instead of 1. Negative values ind icate worse t ha n UCIP performa nce, a nd positive va lues 

indicate better than UCIP performance. 

We can start wit h a n simulated example data set to demonstrate the capacity. stst 

fu nction. Reca ll that we need two sets of response times, the single target in isolation and 

t he single target a mong other non-target processes. In this exa mple, we simulate data fTom 

a limited-capacity condition, wherein the additional information sources slowed the 

processing rate of our ta rget channel, 

rate1 <- .35 

RT.pa <- rexp (100, rate1 ) 

RT.pp. l i mited <- rexp(100, .5*rate1) 

tvec <- sort (unique(c(RT.pa, RT.pp . limited) )) 

To evaluate CsTsT(t) a nd test the null hypothesis of UCIP-STST processing, we can 

use t he function wit h a list of response t ime vectors. 

cap<- capacity.stst ( RT=list( RT.pp.limited, RT.pa)) 

We use print(cap$Ctest) to see the resul ts of the statistical test. 

Houpt-Tovnsend UCIP test 

data: RT and CR 

z = -3.4161, p-value = 0.0006353 

alternative hypothesis: response times are different than those 

predicted by the UCIP-AND model 

The z-score is sig nificantly negative, so we would reject the null hypothesis of 

UCIP-STST processing. Note t hat in this example, we used the default function ca lls of 
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CR=NULL (i.e., we assume a ll response t imes are from correct tria ls) a nd ratio=TRUE 

(return the ratio version of the function). Also, note t hat the information about the 

alternative hypothesis returned with the print command refers to the UCIP-AND model, 

because the statistical test is a special case or the AND test with only a single chan nel in 

the UCIP model (c.f. Blaha and Townsend (under review)) . The data from this simulated 

example a re plotted as t he solid red line in Figure 1. 

The capacity. stst funct ion returns an approxfun object representing the ST-ST 

capacity ratio function (ratio= TRUE, which is the default) or the ST-ST capacity 

difference function (ratio= FALSE), as well as the ucip. test for ST-ST processing. If 

ratio= FALSE, capacity. stst a lso returns the varia nce estimate for the d ifference variant 

for the capacity coefficient . If the reported p-value for the statistical test is less than the 

user's predetermined type I error a level, at least one of the UCIP assumptions bas failed. 

Unified Workload Capacity Space 

Townsend and Eidels (2011) introduced un ified capacity spaces, a set of inequali ties 

that enable both capacity coefficients and the parallel processing response t ime distribut ion 

bounds to be plotted on the same coordinate system for direct visual comparison. In order 

to do this, t he bounds for standard parallel processing were transformed from standard 

CDF values existing on the range [0, lJ to inequali ties of eit her cumulative hazard functions 

or cumulative reverse hazard functions, de pending on the stopping rule, for direct 

comparison wit h t he capacity coefficient values. Note t hat in t his case, the capacity 

coefficient assumes t he ratio format which exists on t he ra nge [0, +ooJ. Townsend and 

Eidels (2011) derived the unified capacity space inequalities for AND a nd OR processing of 

2-channel systems. (Blaha & Houpt, Under Review) extended this theory to general 

n-channel models and derived the unified space inequa lit ies fo r ST-ST processing . 

In the sft package, we have developed a single function, estimate. bounds, that can 

estimate both the traditional CDF versions of the bounds on parallel processing for all 
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stopping rules a nd tbe unified workload capacity space inequali t ies. First we review both 

versions of the inequalities, and t hen we explain the estimate. bounds function. 

Bounds on Standard Parallel P rocessing 

13 

OR. Let Fc(t) = P [minc(Tc) :::;; t], for a ll real t :2: 0 and c E C, denote the 

cumulative d istribution of response times under a minimum time (logical OR) stopping 

rule. T he genera l bounds for n-channel parallel processing under an OR stopping rule a re 

(Colonius & Vorberg, 1994): 

Here, we have used t he set notation C \ { i} to indicate reponse t imes with a ll sources 

present except i (i.e. n - 1 total processing channels). Under the assumption or conditions 

that t he individual channels are identically distributed (liD), this inequality chain 

sim plifies to 

Wbeu the model under scrutiny bas only n = 2 channels, t he inequali ty chain takes the 

form: 

(6) 

(7) 

Tbe upper bound on this final inequali ty is often referred to as the ' race-mod el inequality,' 

wb icb bas long beeu used to test for evideuce of coactive processing architecture (Miller, 

1982) . 

A D. Let Cc(t) = P [maxc(Tc)::; t], where again C = {1, ... ,n} is the set of all n 

channels and c E C, denote t he cumulative dist ribution of response t imes under a 

maximum time (logical AND, exhaust ive) stopping rule. T he general bounds for n-cha nnel 

parallel processing under a n AND stopping rule are (Colonius & Vorberg, 1994): 
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Under t he assumption or cond itions t hat the ind ividual chan nels are identically 

distributed , this inequality chain simplifies to 

14 

(9) 

When the model under scrutiny has only n = 2 channels, t he inequality chain takes the 

form: 

ST-ST . Let Fk,c(t) = P[Tk,C ::; t] denote the CDF of response t imes under t.he 

ST-ST stopping rule, where the target of interest. is on processing channel k among n 

active channels. T he genera l bounds for n-channel parallel processing under a n ST-ST 

stopping rule are (Blaha & Townsend, under review): 

n n n Fc(t) ::; h.c(t) ::; I);'c(t). 
c=l 

Under the assumption or conditions that the ind ivid ual chan nels are identically 

distributed, this inequality chain simplifies, for any cha nnel c E C, to 

(10) 

(11) 

(12) 

When the model under scrutiny has only n = 2 channels, t he inequality chain takes the 

form: 

(13) 

Note that in this case, k = 1 or k = 2, but t his may not be specifiab le a priori depending 

on experi mental design. 

Across all stopping rule condi t ions, violation of the upper bound indicates 

performance that is faster than can be predicted by an unlimited capacity parallel model. 

Th is may arise from positive (facili tatory) crosstalk between parallel channels, super 

capacity parallel processing, or some form of co-active arch itecture in the measured human 

response time data. Violation of the lower bound indicates performance that is slower than 
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predicted by a n unlimited capacity para llel model. T his may arise from negative 

(inhibitory) crosstalk between para llel channels, fixed or limited ca pacity processing, or 

some form of serial a rchitecture in t he measured human response time data. 

Bounds on Capacity Coefficient Space 

15 

The bounds on parallel processing defined above can be transformed from CDFs into 

cumulative hazard and cumulative reverse hazard funct ions to form inequality chains with 

t he capacity coefficients. T he bounds for all stopping rules a nd a ll models are summa rized 

in Table 1. For the deri vation of these bounds, the reader is referred to Townsend a nd 

Eidels (2011) a nd Blaha and Houpt (Under Review) . 

The es"tima-ce. bounds function in the sft package can be flexibly used to compute 

either the CDF or unified capacity space bounds on standard parallel processing. For its 

fi rs t input argument, RT, it takes a list of numeric an ays of response t imes, each measured 

from the individua l channels to be modeled. T he RT list can contain either one array for 

each of t he n channels to be est imated (so l eng-ch(RT) = n), or it can have l eng-ch(RT) = l 

a nd the bounds can be found under a n assumption t hat then channels are ident ically 

dist ributed . In the former case, the number of cha nnels, n, is estimated from t he length of 

the RT list, and so the user can keep the default input arguments assume. ID= FALSE and 

numchannels= NUL L. In the latter case, because the length of the RT list is only 1, t he input 

arguments assume . ID= TRUE and numchanne l s =n (where n ;:: 2) must be specified by the 

user. 

The optional input argument CR is a list of correct indicators t hat should have the 

same length as the input argument RT. If CR= NULL (default), t hen a ll the response times 

a re assumed to be from correct response t ria ls. 

Cri t ically, t he user must specify wh ich stopping rule (OR, AND, ST-ST) should be 

computed using t he a rgument s"topping.rule= ( "or", "and", "s"ts"t"). Finally, the 

input argument unified.space indicates whether the bounds should be computed for 
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CDF space (unified. space= FALSE) or for tbe unified capacity coefficient space 

(unified. space= TRUE). 

16 

Here, we demonst rate t he use of t he estimate . bounds function with data from the 

dots dataset, which is included with the sft package. F irst, we load the data and extract 

the necessary data to estimate t he bounds for Participant S3 for the OR stopping rule 

condit ion. 

dat a(dots) 

attach(dots) 

sub <- ' S3' 

cond <- 'OR' 

chan1 <- RT [Subject==sub & Condition==cond & Correct & Channel1>0 & Channel2==0] 

chan2 <- RT [Subject==sub & Condition==cond & Correct & Channel1==0 & Channel2>0] 

redundant <- RT[Subject==sub & Condition==cond & Correct & Channel1>0 & Channel2>0] 

r t s <- l i s t(r edundant ,chan1, chan2) 

Next, we calculate t he bounds using the estimate. bounds function. 

cdf.bounds <- estimate .bounds(rts [2 :3], corrects[2:3], stopping .rule='or' ) 

capacity .bounds <- esti mate.bounds(rts[2:3], corrects [2: 3], 

s t opping.rule='or', unified.space=TRUE) 

We t hen calculate the redundant targets cdf to compare to bounds. 

redundant.cdf <- ecdf(rts [[1]] [corrects[[1]] >0] ) 

And, we calculate the capacity coefficient. 

or.cap <- capac ity.or(rt s, corr ects) 

Sample plots of parallel processing bounds computed with estimate. bounds are 

shown in F igure 2. Th is figu re shows both the AND and OR bounds, plotted in both CDF 

a nd un ified capacity space, for a single participa nt from the dots data set. In the CDF 

space plots, the empirical CDF of the redunda nt target trials response time data for either 
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the AND and OR cond itions is shown in the thick, solid black lines. The upper and lower 

bounds on those CDFs are plotted in the dashed and dotted (respectively) red lines. Note 

that in these trad il: ional views, we wou ld t ry to make inferences about capacity from the 

violations of the bou nds1 For example, in the data shown in Figure 2 (lower half, OR 

task), t here is a clear violation of the lower bound, roughly between 0 and 250 ms. Using 

the t raditiona l CDF space plots, we would infer t hat Participant S3 is too slow to be 

performing like a race model with redundant targets. Now, using t he unified capacity space 

plots, we can make more direct inferences about t he relationships of the bounds a nd 

capacity coefficient. In t he lower right plot of Figure 2, limited capacity CoR(t) < 1 is 

observed for tbe whole range of response t imes, wi th violations of the lower bou nd obvious 

for the early response times. 

fPCA for Capacity Coe ffi cie nt s 

Functional principal components analysis (fPCA) is an extension of standard 

principal components analysis to infi ni te dimensional (fu nction) spaces (c. f. Ramsay & 

Silverman, 2005). J ust as in standard principal components analysis, fPC A is a method for 

find ing a basis set of lower dimensionality than the original space to represent the data. 

However, in place of basis vectors, fPC A bas basis fu nctions. Each funct ion in the or iginal 

dataset can then be represented by a linear combination of those bases, so that each datum 

is represented by a vector of coefficients (or scores) in that linear combination. 

The capacity coefficient is a function across t ime, so the differences among capacity 

coefficients from different participants a nd/or conditions can rarely be characterized by 

simple greater tha n or less t han relations. The nuances of variation in functions would be 

lost if one were to reduce the capacity estimates to a point by taking an average across 

time or the maximum/minimum of the function. By using fPCA we can ma-"'<imize the 

1For a full discussion of the inequality chains formed by the AND a.nd OR processing bounds, as well 

as t he inferences about capacity t hat are possible from t hese inequality chains, t he reader is referred to 

Townsend and Wenge1· (2004). 
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amou nt of variation we capture with a point estimate or small number of values: The 

factor scores can be used to examine differences a mong capacity coefficients, taking into 

account variation across tbe ent ire funct ion . 

18 

The R functio n for fPCA implements tbe steps outlined in Burns et al. (2013). First , 

the data are shifted by subtracting the median response time within each condition for 

each participant, using the same shift for both single target a nd mult iple target tria ls, so 

that t he capacity curves will be registered. Second, each capacity coefficient is calculated 

with the shifted response t imes. Next, the mean capacity coefficient across participants and 

conditions is subtracted from each capacity coefficient, and the result ing capacity 

coefficients are represented using a b-spline basis. Tbe fPCA proced ure ext racts the fi rst 

basis function from the bspline space that accounts for the la rgest variation across the 

capacity coefficients. T he next basis function is chosen as that which explains the largest 

amou nt of remain ing variation in the capacity coefficients, given the constraint that it must 

be orthogonal to the fi rst. This process continues unt il the indicated number of bases have 

been ext racted.2 Once the capacity funct ions are represented in the reduced space, a 

V'c.rima.x rotation is applied to concentrate variabili ty a.nd increase interpretabili ty. 

The fPCAcapacity function can be called from the sft package using the following 

syntax: 

fPCAcapacity(sftData, dimensions, acc.cutoff .75 , OR= TRUE , rat io TRUE, 

plotPCs = FALSE) 

The data for fPCA analysis should be in t he standard SFT data form, which is described 

thoroughly in Houpt et a.l. (2013) : t bere should be a. column for a. participant identifier 

(sftData$Subject), a column fo r the cond ition (sftData$Condition), a column fo r the 

salience manipulation value of each source of information (sftData$Channeli), a column 

for response t imes (sftData$RT), a.nd finally a column ind icating whether the participant 

was correct on each trial (sftData$Correct). The fCPAcapaci ty function also bas a 

2The maximum possible number of basis ftmctions is the number of input functions. 
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ratio flag to indicate whether to out put capacity ratios (if rat io= TRUE) or differences, a n 

OR flag indicat ing t he version of the capacity coefficient (Equation 1 if OR= TRUE; 

Equation 2 if OR= FALSE) ,3 a nd a n ace. cutoff input value to establish a min imum 

criterion for accuracy required for includ ing data in the a nalysis. 1\vo variables unique to 

the fPCA analysis are the dimensions value, which can be set by the experimenter to 

establish the number of basis fu nctions used to represent the data, and the p l otPCs 

indicator which will generate plots of the principal components if plotPCs= TRUE. 

The output of the funct ion is a list of length four. The first list entry is a data frame 

titled Scores, which contains the loading values (coefficients on the basis funct ions) for 

each part icipa nt a nd condi t ion. MeanCT is the averaged capacity function across all 

participants a nd conditions, while PF is a list containing each of the principal fu nctions, the 

number of which will have been specified by t.be d imensions a rgument in the call to t he 

function. T he last lis t ent ry is medianRT, which will keep track of t he amount each capacity 

curve bas been sh ifted duri ng t he registration s tep, measured in mil liseconds o f RT. 

F igure 3 illustrates the output plots generated by the f PCAcapacity funct ion when 

run on the dots data using t he function call: 

fPCAcapacity(dots, 2, acc.cutoff - .75, OR TRUE, ratio TRUE, 

plotPCs ~TRUE). 

Note that in the dots data, t here are two conditions, OR and AND, referring to two task 

inst ructions given in the experiment; in the present analysis, we use Equation 1 in t he 

fPCA ana lysis for all the data. In the above call, we asked for two dimensions, but again 

that choice is up to t he experimenter. We can see that for t he dots data, the first two 

components can together account for 93% of the va ria nce (summing t he values noted on 

t he y-axis labels). The fi rs t component fu nction ma inly inflates (or deflates, depending on 

t he sign of the loading value) capacity va lues for early- to mid-range react ion times. T he 

second PC capt ures variation in t he capacity function at early and late t imes; when PC2 is 

3 Note that the ST-ST capacity coeffient has not yet been implemented in fPCAcapac i ty. 
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higher, both early a nd late values of C(t) are hig her. The scores for each of the ten 

participants, in t he two stopping rule condit ions, are shown in the right panel of Figure 3. 

In th is example, both of the components can easily separate differences in the two tasks 

and between the various subjects. Combining the in formation fTom the Component plots 

and t he Score values, the OR condition data are consistently higher than t he AND 

condit ion data for a ll t imes and all participants. W ithin participants between conditions, 

the largest differences in capacity coefficient functions occur in the middle range of 

response t imes. fPCA a lso highlights d ifferences in capacity among participants. In 

particular, participant S5 shows much lower variability between the OR and AND 

condit ions than the other part icipants, a nd so 85's load ing scores are higher a nd closer 

together in the right-hand plots. 

Because t he principal component functions are specifically chosen to describe the 

variability between the capacity functions for participants and conditions, this tool 

provides an excellent method for looking for influences of task and individual differences in 

capacity functions. Whereas roost previous a na lyses of capacity data have restricted 

themselves to a gross comparison with the baseline model (i.e. observed value relative to 

1) , this analysis is more relative, highlight ing differences between observed functions, and 

picking up dynamic patterns across various reaction t imes. 

For more details on fPCA for the capacity coefficient, see Burns et al. (2013) . For 

more general details on using fPCA in R, see Ramsay, Hooker , and Graves (2009). 

Assessment Funct ions 

The assessment functions are a generalization of the work load capacity functions that 

account for incorrect responses. The original capacity coefficient established a baseline that 

assumed perfect accuracy. Wh ile the standard capacity coefficient is robust to slightly less 

than perfect perfo rmance by a participant (tbe rule of thumb is that above roughly 90% 

accuracy should be fine), when accuracy is low, either t he assessment functions or a 
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paramet ric measure such as the linear ba ll istic accumulator (LBA) capacity (Eidels, 

Donkin, Brown, & Heathcote, 2010) should be used. 

Townsend and Altieri (201 2) derived fou r d ifferent assessment functions each for 

AND and OR tasks to compare performance on two target information sources wit h the 

performance of an unli mited-capacity, independent, pa ra llel (UCIP) model. T he UCIP 

model is a ugmented with a n error generating process for both sources of information. Each 

error process is assumed to be independent of, a nd para llel to, the processes fo r the other 

source of information, but there is no assumption of independence between the correct a nd 

error processes for the same source of information. 

The correct assessment functions assess performa nce on correct trials a nd the 

incorrect assessment functions assess performance on the t ria ls wi th incorrect responses. 

The fast assessment functions use the cu mulative distributio n functions, similar to the 

AND capacity coefficient, and the slow assessment fu nctions use the survivor functions, 

similar to the OR capacity coefficient. 

In an OR task, the detection model assumes t hat the response will be correct if it is 

correct on either source, i.e., if either source is detected . Hence, t he first source (A) correct 

processing t ime must the faster than fi rst source incorrect time, TAc < TAJ or the second 

source (B) correct must be faster than t he second source incorrect, T8c < T8 1. For t he 

CDF (fast) version of the assessment function, we are interested in whether the response 

was at or before t, so either TAc ::::; t a nd TAc < TAT or TBc ::::; t and TBc < TBT· Using !Ac 

for the completion t ime density for the first source correct process, FA1 for the d istribution 

of first source, incorrect processes completion times, and likewise for t he second source, this 

probability can be written out as, 

r rt lo !Ac(t) [1 - FAt] + lo fsc(t) [1 - J.1nl 

-l !Ac(t) [1 - FAI]l fsc(t) [1 - FBIJ. 

The same pattern of logic can be used to deter mine the baseline of processing for each of 
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other cases, slow-correct, fast-incorrect and slow-incorrect. For a fu ll explication of t he 

assessment functions and the derivation of each case, see Townsend and Altieri (2012). The 

assessment function with the s ft package can be used for detection tasks with the 

following syntax: 

assessment(RT, CR, OR, correct, fast, detection=TRUE) 

The RT and CR are lists of response times a nd correct ind icators for each tria l. As in the 

standard capacity R functions, t he first element in the list contains t he measurements from 

trials in which both sources of information were present and the second a nd third elements 

are for each of the single-source conditions. The OR input is a TRUE/ FALSE indicator of 

whether to calculate t he assessment function using an UCIP-OR baseline (OR=TRUE) or a n 

UCIP-AND baseline (OR= FALSE) . The correct a nd f-1st parameters are TRUE/ FALSE 

indicators to specify which of the four types of assessment functions to use. 

For example, to evaluate a participant (S7) from the OR-decision dot detection task, 

we first extract the necessary data, 

sub <- 1 S7 1 

cond <- 'OR' 

#select single channel data 

chanl <- dots [Subject==sub & Condition==cond & Channell>O & Channel2==0, 

c('RT', 'Correct')] 

chan2 <- dots[Subject==sub & Condition==cond & Channell==O & Channel2>0, 

c('RT', 'Correct')] 

#select redundant target (2-channel) data 

redundant <- dots[Subject==sub & Condition==cond & Channell>O & Channel2>0, 

c('RT' ,'Correct') ] 

rts <- l ist (redundant$RT,chan1$RT, chan2$RT) 

corrects <- list(redundant$Correct, chan1$Correct, chan2$Correct) 
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Next, we simply apply the function: 

a.or.cf <- assessment (rts, corrects, DR=TRUE, correct=TRUE , fast=TRUE, 

det ection=TRUE) 

The output is a stepfun object, so it can be plotted using plot: 

pl ot (a.or.cf, ylim=c(0,2)) 

F igure 4 shows each of t he correct/incorrect and fast/slow assessment functions for 

Part icipant 7 in the OR cond ition. Note that UCIP performance would show a value of 1 

for a ll times in all plots. 

In discrimination OR tasks, a participant may respond based on whichever source 

finishes first. Hence, the response will be incorrect if the first to finish is incorrect even if 

the second source would have been correct. This results in a slightly different baseline for 

performance assessment. Now, for a correct response, either TAc or TBc must be faster 

than both TAT a nd Ta1. The UCIP baseline for correct-fast, OR, d iscrimioation is: 

l !Ac(t) [1 - PAl ] [1 - PB1l + l !Bc (t) [1 - PAl ] [1 - FB1l 

-l !Ac(t) [1 - FM] [1- Fad Jot fBc(t) [1- PAT] [1 - FBd 

See Donkin, Little, and Houpt (2013), particularly the appendix, for details of the 

discrimination assessment functions. The R synta.;x for discrimination tasks is the same as 

the syntax for the detection task, but with tbe detect i on parameter set to FALSE. 

Conclusion 

Workload capacity analysis entails a powerful set of tools within SFT for examining 

the effects on information processiog of differing numbers of information sources (d iffe reot 

oumbers of stimulus inputs, different numbers of act ive processing channels). Severa l 

recent theoretical addit ions to capacity analyses have both expanded the applicability of 
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capacity to a new stopping ru le (ST-ST processing) and broadened the ava ilable tools for 

capacity analysis, especially to allow more nuanced comparisons across participants and 

experimental cond it ions. Despite being a powerful fra mework based on min imal 

assumptions (and often relying on non-para metric a na lyses) , SFT is underut ilized within 

the psychological research community, partly because researchers previously needed to 

develop t heir own computational codes. We hope that by making the tools accessible with 

open source R functions a nd with the present paper together with Houpt et al. (2013) , 

researchers can easily use the SFT tools more frequent ly. 

Here, we have described briefly the new theoretical advances and provided a detailed 

account of t he new fu nctions for utilizing the new tools in the R statistical computing 

framework. These new funct ions constitute the first major additions to the sft package 

beyond t he init ial funct iona li ty described in Houpt et a l. (2013) . The advantage of this 

paper is that it focuses on the computationa l implementation for using the new capacity 

tools wit h detailed exa mples of t he R code. Researchers seeking to try capacity analysis 

now have a standardized implementation of these fu nct ions, together with t he other SFT 

tools for assessing processing a rchitect ure made ava ilab le in t he sft package. We enco urage 

researchers to use this standardized R package to reduce t he chance of implementat ion 

errors that inevitably arise when each user is left to themselves to tra nslate from a 

t heoretica l paper to usable code. And as add itional t heoretical advances are made in SFT, 

we will continue to update the s ft package as the state of t he science for SFT modeling. 
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Table 1 

Summary of all Bounds on the Capacity Coefficient (from Blaha & HourJt (under review)} 

LOWER BOUNDS 

Stopping Rule n-channels n TID channels 2 channels 

OR 
ln{mintjSc\{<}(t) j} 

ln<fJc': , Sc(t)) 
ln{Sc\(l}(t)} 

In<rC=, sc(t)} 
lnfmin!S1 (t} ,Sa(tlJl 

In{ S, (t)•S2(t)} 

STST ln{F•ft)} 
2::.., lnFc(t)} 

In Fk t 
n tln ' c t 

ln{F•(~} 
ln{P1(t)+72(t)} 

AND 
ln(O;,., Cc(t) ln{fl; 1 Gc(t)} ln{G,(t2•G2(tll 

ln{max,,, Gow>(t)+Go\m(t)-Gow .n(t) } ln{2•Gc\{ 1} (t)-Gc\ { 1 ,2) (t)} ln(G,(t)+Ga(t) -1} 

UPPER BOUNDS 

Stopping Rule n -channels n TID channels 2 channels 

OR In{ m:.;x,,j [So\{<} ( t) +Sc\{Jl (t)- Sc\ '<J) (t) I} ln{2•Sc~( •l (t) -So~!' ,2} (£)} lnfS ,{t)+S>{t)-1} 
Jnm::_ , Sc(t)} In {I l:nl Sc(t)} lo( s, (t)+Sz(t)) 

STST In~ 
~""' 1 Pc (t)} 

!nfF•(t)} 
In{ P,(t)+ Pa(t)} 

AND ln{lT'~ 1 Gc(t)) 
ln{min,rcc,1, 1<tJ p 

1n{fl; . 1 Gc(t)) 
ln{Go\(l}t)} 

ln{C,(t)•C2(tl} 
ln{roin[G, (t),G2(t)J} 
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Figure 1. Plots of ST-ST processing capacity coefficients, in ratio=TRUE- form. The data 

were simulated from ST-ST processing, including a model exhibiting limited, unlimited, 

and super capacity processing rates, and the corresponding CSTST estimates are plotted in 

red, green, and blue (respectively). The baseline reference model, giving CsTST = 1 is 

plotted in the thin, black line. 
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Figure 2. Example bounds on standard parallel processing from one participant (83) in the 

dots data included in the sft package. The top row shows the bounds for AND processing, 

and the lower row illustrates the bounds for OR processing. The left hand plots give the 

traditional CDF space plots, with the bounds on the CDF for the redundant signals 

response times. The right hand plots show the newer unified capacity space version of the 

same bounds, plotted against the empirical capacity coefficient function. 



 

33 
 

Distribution A:  Approved for public release.                                  88ABW Cleared 04/01/2016; 88ABW-2016-1588. 

LATEST SFT WITH R 

(.) 
a.. 

Component Function 

- - - - Component 

1000 1200 

Time (AdJUSted) 

Tlmll!l (AdJUSted) 

30 

Component - Mean Score 

10M 12<10 

rmfi(Adjusted) Subject 

3 4 5 6 8 9 10 

Timfl (Adjust&d) Subject 

Figure 3 . Sample fPCA plots computed on the dots data included in the sft package. The 

far left plots show the component functions together with the mean capacity function; the 

center plots show the difference between the component and the mean capacity functions. 

The right-hand plots show the loading scores for each participant (x-ax:is) and for each 

experimental condition (here, termed OR and AND). 
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Figv:re 4. Sample a.s;;essment function plots computed on one participant (S7) in the the 

dots data included in the sft package. 
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the date uf receipt and acceptance ~hould be inserted bter 

ALstrad A novel dimer automaton model for innovation diffusion based on a 

simplificat-ion of the AB model and zealot model is proposed. The model assumes 

thAt two oppoRing opinions Are competing to he t.he dominant opinion among 

individunls in n network. Zcglots nrc stubborn individunls whose opinio11 is not 

susceptible to influence by others. The amount of zealots required for consensus is 

measured experimentally in a number of different. situations. The threshold density 

of zealots is far lower than the control experiment., suggesting that zealots haYe a 

mnch ln.rgt>r inflm:nu: thnn nonwcl indivirlwds in the modt>l. This thr·.·,shold ('ftll 

be further reduc~d by placi11g zealots at critical11odes in tile network, determined 

by ::;taHdard docialHetwork rnea::::ureto or by utSing a greedy algorillw1. Other exper-

iments show that when both opiniono. have zealots, the outcome depends on the 

total number of zealots in addition t.o the ratio of zealots of opposite opinion, and 

often reRuhR in an ''nndecidPd" ontcomf:. 

AJJ..re>'~(e~) of ;mtlwd.<• ~lwulJ Le given 
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1 Introduction 

InnoYation diffusion addresses the adoption of new technologies throughout society 

[20]. Since its introduction. the concept has been applied to a number of differ­

C'llt domnins not originally envisioned. and innovation diffusion i8 often used ~~s ~t 

wet<:~phor lo de::x.:ri.be <:lilY nuwber of tl1ing::; ( teduwlogieo:;, upinioBb, <:>ttilude::;, d<:'­

cisions) that spread through a population. The innovation rate (i.e., the number of 

individuals V.'ho adopted the new technology) owr time typically· follows logistic-

like growth (i.e., grmving exponentially, and then slowing as the innovation nears 

fnll Adoption). TdeRlly, from R mArketing Rt.Andpoint, nndemtrmding innovrn.ion dif-

fu:<ion helpb aueower lhe queeotiuH "hmv do 1 en,;ure my product, t<:~keo:; uif':"' Mauy 

studies have looked at this problem in hindsight, but general purpose, accurate, 

and reliable predictors are not currently available. 

ThiR prtpr;r introduce;; a 1ww individnrtl modeling and ;:;imnhtion apprortch for 

innovation diffusion that is predictive for a certain class of idealized. but realistic 

::;cenario:J. The prupuo:;ecl model, which ib cenaiuly a grueob over::;iwplificatiou of 

human behavior. allows an individual to have a state taken from a small finite set of 

possible states. Individuals change their states over time b:v interacting with other 

individn11ls in a p11irwiRe hl"hion according tort deterministic rnle (however the 

order of iuteractiollb it< randow). lnteracti.ouc< art' a:Jbumed to occur o11ly lwtween 

adjacent individuals in the user-defined network. Despite the limitations of this 

oversimplified indiYidual model, there are sewral advantages worth highlighting. 

First, and from a practical standpoint., the simplicity allows for a very efficient 

co1nputer implement;:,tion. For exmnple, a million simulations, each with ten thou-

::;and iuclividuab, Wt're cmuplelecl in a few miuult'b u,;ing tl1t' propobed model on 
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a single workst~1tion with an D.dequgte CPlT. Second, model::. designed to be "rc-

ali::-tic" ufle11 become :Jo complex that it ic, difficult or impo::;-oible to rei:i:Jon about 

which component;;: are most directly influencing the observed behavior, or are even 

important to the model. Simple models are more easily communicated bet>veen re­

searchers in disparate areas, and can be implemented and modified \\··ith little effort 

to prodncx~ m:w rt>su hs. F"nrthcrmon:, thr: filw dt~tnils of individwtl compkxity tt>nd 

to "v,•a::;h out" wheu one couc,idelco the collective belw,vior of populi:itiun::;. U::;e of i:i 

simpler model can help circumvem these is;;:ues. Finally, a simpler model is more 

amenable t.o future ri~orous anal:ytical treatment, especially if it can be shown that 

the model elegantly captures some interesting behavior. Thus. these advantages 

mn.kc simple individnn.l modt>lA nr,tmdivc for 11:'.\' in hrg0 ::ocalc simnhtionA, which 

are uece,;::;ary to under,;tawl ami predict the collective behavior of imlividuab. 

1.1 llelated \Vork 

Threshold model;;: were one of the earliest attempts to undentand hmv individual 

variations throughout a population affected the innovation diffusion curve [ 12:. 

These modAle. ;i.SRume r,hrn Pach individmd hBR complPt.e information abont rdl 

or,her individual::. Dnd h~t-3 some threshold for r,nking gction based on this infor-

Jui:iliun. However. the a::;c;urnptiou fur individuab to have complete infunu<:>tiun 

may not always be appropriate, so relaxation of this assumption led to models 

such as the Linear Threshold Model [2{. In this model, a individual has a state 

encoding whether the? have or have not adopted. Once adopted, the individual 

caunot un-adopr,, so the ditli1:;ion is progressive. Witil the Liuear Thre:;hold .Ylodel, 

imlividuab adopt if the fractioH of neigl1borb haviug adopted ib lctrger thau their 
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given thrcsltold. The threshold c~m be randomly assigned, or fixed (e.g., to 1/2). 

1vlodeb like thio:; ::;l.rive to repre::-eut, tlte Lehcwior of an individual in a way th<:~t 

allows the collective behavior of the population to be an emergent property of the 

system. The power of individual models is that, when successful. the:v illuminat.e 

the relationship between individual actions and collective outcomes. 

There are many other individual models of social dynamics including broad ar-

C'ilS snch ns opinions, cnltnrcs, langnagcc., <tnd crowds l::\j. Another rcdoption modr:l, 

The Independent Cnsc~cde :Ylodd. assumes g stodHtstic flavor. giving e~cch lltwly 

adopting individual one opportunity to influence each of it's neighbors according 

to some probability [10]. The voter model is a simple and popular model for opin­

ion dynamics [13]. In this model, one picks a vert.ex at random and the stat.e of 

thnt vertex is then chnng·.-,d r,o tnkc on th1: stntc of n mndomly cho::o0n n0ighhor, 

wltich performs coarse11ing via interL:.,ce noise. There have been many variants allCl 

exploratiow; iul.u thi::- ::::iiHple IHodel. Tlte ideao; pre:::,enl.ed iu thi:::, paper are ba:::,ed uu 

the zealot variant [2L22] and the centrist/A£ variant [26,4]. In the zealot variant, 

some vert.exes are "zealots:' and have a bias t.mvards one opinion over the other. 

The existence of 11 few ?.ertlots can ::oignific11ntly affect t.he long term ontcome of 

the ::;y::;l.ew. ln the ceutri::-t) AB voriaut::;, au <:~ddiliunal intermedictle eol.ale i-o intro­

duced, and it is assumed that states cannot change without first passing through 

the intermediate state (i.e., in order to change from A (left.) to B (right) one must 

first become AB). In the AB model, the probability that .4 ~ AB. AB -----7 B, etc., 

is hasC'd on thr: twighhorhood d0nshy of !l, R, rmd AR. 

It is known that models >vith intermediat-e states like the AB model accomplish 

coarse11ing by reducing the surface tension along the boundary bet·w·een opposing 

durn<:~iu::-. Such rnodeb <:~re WHteT,ilHeeo referred lu a:::, "curvoture driven" Hlodeb, 
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a8 opposed to interface noi8e models. Furthermore, the modd8 discussed above 

are diif<:'reut from rumor a11d epide1uic model::-, ::.im·e the opiuiom; compete for 

territory versus quickly spreading within vulnerable regions as epidemic models 

do. The model presented in this paper is a combination of t.he zealot. and the AB 

model. and a simplificat-ion of both. 

(jiven a model of inflnenc;e and opinion or adoption like tho:;;e discn:;;serl ahove, 

is it poo.sihk r,o rlctermim: A smAll set of inrlividnAls t h:1.t, when infhwne:ed, cnn 

catalyze d1<:tnge throughout the entire network':' This questi011 is at the he;:,rt of 

the research area of Influence Maximizat-ion [.S]. A solution close to optimal is 

very valuable in a marketing context., for example, as it could lead t.o an effective 

allocation of advertising resources. The current basis for influence maximization 

techniques ia to ass11me an ~1doption ntodcl like the Linear Thr-~·shold :Lvlodel ]:J4] 

or the lndepeudent l'a:wade Model [ 10: and compute the ::;mall<:'bt o:;et of c<eedb that 

will cause adoption to spread throughout the entire network. 

The greedy algorithm by Domingos et al., works b)' computing the spread of 

influence throughout the net.work for a given set (which is init.ially empty), and 

finrling the individnal (who iR not in r,\w.t. Ret'! that increaseR the :;;preBd of influence 

the most ]8]. Tlwt individl_Hii is chosen and ~1clded to thC' set, and the Dlgorithm 

repeat::- uutil the inllueuce ha::; covered tl1e entire network, with ll1<:' ::;olutioH be­

ing the set after termination of the algorithm. Kempe et al. later proved that 

the greedy algorithm will reach >vithin 63% of optimal for these models )5]. Be­

cause the greedy algorithm is effective, but computationally expensive, researchers 

l1<'tYE- developed techniques that improve the efficiency of intluence Inaxiluization 

tedmique::-[~7 ,6, 11, 10:. 
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l.:J Proposed :tvfodd 

The model to be proposed here is a dimer autolllatoll model of opinion dy11amics 

involving zealots and curvature-driven coarsening via an intermediate state. Dimer 

automata are similar to voter models; however, instead of updating one vertex at 

a time, one edge is chosen per asynchronous update step. For this reason a dimer 

antomnton can be thonght of ns pattern matching [1.nd snbstitution system. Both 

e11dpoints of that edge 1uay be simultallE'Ol.E<ly changed, avoidi11g the asymlHeny 

problem with tlH' voter model [3]. Formally, we a::::::;urne :,;ome gnph G = (V,£) 

where F and E can be interpreted as the individuals and their relationships in 

the model, respectively. Let .rf be the state of vert.ex (inclividual'l i at time t. To 

perform fill updatP, fill edge (i,j'lc R is choRen At random, and the elldpoint.R of 

the edge are updated ::::yrnmetrically ::::uch that 

(I) 

The application of the rnle to .rf and :rj C;i.n he thonght of ahRt.mctly a::: i and j 

intemcting nt timet. Also, tis ::-imply [1 counter of the number of edges updated so 

far, and only one edge is updated at a time (but edges can be updated many times 

over through the course of the simulation). The extremel;r" large space of rule"- for 

a 12;iven set of states is 12;ives dimer automata the potential t.o model a wide ran12;e 

of plwnomenn. The rule h·.·,hn.w::c ;1.:" ;1. finite stntc nntorru·ct.on from the viewpoint of 

each Xi. For the opinion dynamics model for this paper, let the nile be defi11ed as 

l
lrl if c ~ 0 

R( rr r I ~ ': if " , 0 and " T' IT and T ci 0 ' 

.. ebe 

(2) 
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which is b~tscd off nn cmlicr :j-state dimer nutoHHtton rule for domain conr8ening 

[1:. Thi::- logic eucoded in llti::; rule i::- "generalizt>d," HtectniHg the rule ca11 ,;upport 

an arbitrary number of possible opinions without any mvdification. 

It is important to differentiate between the opinion of an individual and the 

state of that individual. An individual with state a- has opinion lv-1. Thus, the 

sign of the state designates whether that individual is a zealot or not (zealots are 

w~g;l.tive). St,l.te 0 m:t.A as the int.crmcdim.c (i.C'. C'cntrist/AR) stnr.c t.h,,t. positive 

stgtes must pe~;;;s through to chn11gc from one opinion to mwthcr. Sincc dimC'r 

automaton rules are deterministic, the proposed model is a simplification of the 

centrist/ A.B model. The allm\·able transitions are equivalent, but it is not necessary 

to know the how man:v neighbors have a particular state, ;vhich simplifies the 

mod0l and improws r.hc compntntionnl cfficif'Jwy. Pin ally. it is worth noting thnt 

the mea11ing of "zealot" in a dimer automaton is slightly ditferent than in the 

previou::; lit'O'rature. Voter model Z'O'alotb ltave a bia:::: towardto a particular opiniou, 

which is implemented as an increased probability that the zealot will take on 

that state. However, a zealot in the dimer automaton model can be thought of 

having mAximAl hiaR towards a }Xtrtkuhr opinion (i.e., the probAbility the ?.ealot 

take:::: 011 ilb fctvort'd opiniou i., 1). Thib i::- ct reeoult of dirner autmucttou rule:::: lwiug 

deterministic, as opposed to voter model rules which are probabilistic. 

For clarity, COHbidt'r the following exa1Hple. Suppo::-e there are two political par­

ties referred to as ':red"' and "blue," which are equivalent to opinion 1 and opinion 

:2 respectively. Suppose Alice and Bob are friends (i.e .. the edge (Alice. Bob) E E 

so the dimer automaton can randomly choose the edge connecting Alice and Bob 

and 11pdate tlteir states). Let X:4 ;:,nd xb refer to the state of Alke a,nd Hob, re­

::;pedively. If Alice and Bob are both red or botlt blue (i.e., £~ = J;1), tltt'll 110 
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change occurs when they interact since R(1, 1) = 1 and R!2,2) = 2. However, 

::mppOde Alice ii:! red cmd Hull i::- Llue l).e., x~ = 1 <:uFl x:k = 2); after tiH',V inleracL 

both Alice and Bob would become undecided and susceptible to influence (i.e., 

x;l 1 = .rk11 = 0 since fl(L :n = fl('J, 1) = Ot It vmuld then fall to another friend 

of Alice and/or Bob t.o reorient. their affiliations. For example, suppose Eve is 

fri0nds with Alice, n.nd Ew: is blnc. Then, wlwn Evc intcr;-tnA with t.]w nndecidr:d 

Alice, Eve per-:;uade,; Alice lo Lecowe blue (.i.e., <t2 = ~ -:;ince H(U. L) = ~). Tlmo::;, 

Alice has switched from red to blue through the influence of both Bob and Eve. 

This mechanism is what. drives the curvature based dynamics since, on avera12;e, 

Alice will adopt. t.he opinion of the majority of her neighbors. 

The Zf:;t]ot i:c rL simpl0 mechnnism intcnd1~d to m·connt for :ctnbhorn individnals, 

accepted that a certain percentage of individuals will never change their political 

affiliation: in fact people may change their friends to suit their affiliations [5:. 

So, snppose t.hic: time that Alice is H reel ze;cdot, rmrl Rob is still jnst hlne (i.e., 

and x~ 1 = 2). \\.'hell AlkC' and Bob interact, Alice rC'nwins a rC'd zc~dot, 

bul Hob becmueb UJH.iecided (i.e., x~+l = -1 and xjf1 = 0 ,since R(-1,2) = -1 

and R(2, -1) 0). The same effect happens when Alice and Eve interact. If Alice 

and Bob interact a12;ain (with Bob now undecided), Bob will be recruited over to 

reel from undecided, however Bob never becomes a zealot (i.e., .r~42 = -1 and 

:r~2 = 1 since Rl_-1,0) = -1 a11d R(0,-1) = 1). The rule is designed sud1 that 

uun-zealut,o::; never becowe zealolb, and zealolb uever become uon-zecduto::;. 
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2.1 Control 

Wo aro intorost.d in undorstanding how opinions call..,tivoly changj> ovor tirno, 

and how this changj> cloponds on tho initial configuration of tho systom (i.o. > ~ ror 

oach i e V). Fbr this SE>:)tion wo cansidor a sirnplo caso whoro tho systom is almost 

ontiroly non-zealot bluo, asido far a handful of rod zoalots. Each zoalot is assignod 

to a randomly clDsm vortox in tho graph. Doos tho systom roach a consonsus1 

aftor a roasonablo amount of timo? An oxamplo2 of this is shown in Fig 1. Tho 

four snapS:lots show tho oonfiguration of tho systom aftor tho application of Eqn 2 

millions of tirnos. Initially tho systom consists only of bluo satos (slDwn as whito) 

and a fow rod zoalots (shown as black), but tho zoalots aro ablo to quickly sproad 

thoir influonco and dominato tho ontiro systom. 

Fig, i The •onliguration ol the system over time (moving from 1St to right) shows the 

•onsensus tn.ositioning from opiNon i (whit~ to opinjon 2 (bla<k). 

1 Consensus is n-ea.sured u the n.tio of the nwnber of ~ 2 non-z~ts to tcMl ron-

simulation and do:s not o~. 

~ The graph used is~ 100 X 100 squneb.t~e with \01\ Neummnneigliborhocds md perio~ 
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For subsccpwnt experiments in this section we usc~~ \V~ttts-Strog~ltZ small world 

W:'twork [29: wilh rewir<:> prob<:~bilily 0.1 and :<i~e 100 / 100. Fig. 2 ::,how::; lww lhe 

consensus change;;: over time. The dynamics are more complicated than clas;;:ical 

population-based models of innovation diffusion. which often follow a logistic curve. 

The system goes through a period of slmving growth. then quickening growth, and 

ngain ;;]owing as consensus io. nenrly n:;-tchf~d. This cnrve cxhihit::o two inflection 

poinl:<, a::; oppo"'ed lo lhe logit<tic curve which lw,t< only one. 

Diffusion of Innovation 

09 

!I 0.6 

i 
8 OA 

0.> 

00 

-o.~k------,,~o------·~~-----.~o------.,oo-----~,oo 
time 

Fig. 2 The average consensus over time has two infiectio:.n J)(oints, a ITIO:ore complex and realistic 

~.2 A Simple Experiment with Zealots 

\Vhat effect. if any, do zealots have on the system, and hmv do we measure this? To 

begin, ·,ve must first nm a control experiment with no zealots present, and observe 

the outcome::; of dilierenl r<:~tio"' of initi<:~l opiniom •. In otl1er won.b, whal i::, lhe 
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Opinin;n density and c~sensus: smal,l world 
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11 

Fig. 3 Control ~'"l>PTlmPnt. v·:nyine thP 1mt.i.1l dPnR1ty of r.pinirm 1 :mil 2 (n<l ZPFt]m.;o) for Ft 

small world network (Watts-Strog:1Jz, d = 2, p = n 1) 

outcome starting with mostly red versus mostly blue? Fig. 3 shows the outcome 

of 0~1fi 0xpr:rimcnt::-3 with v;wying opinion rlcnsitir:::o in the initial confignmtion. 

'l'l1<2re is o11ly a Slllall wi11dow centt-red around 0.::. (i.e., equal quantities of opinion 

1 and 2) \\·here the density of the final configuration is between 0 or 1 (i.e .. the 

outcome is uncenain). So, 0.5 appears t.o be a critical point for the S}'Stem with 

any density slightly above or below moving quickly to 1 or 0. Based on this, we 

cmt let 0 . .5 be~~ rcasongble thrc8hold to dC'tcrnline wltcthC'r or not the zealot::. have 

taken uvt>r the bYblt'HL ln other word::;, ow:e an opinioH i::; held by rnor<:' than than 

half the population, that opinion tends to quickly take over the rest of the network. 

Now we can determine what initial density of zealots is necessary to shift the 

consensus from the prevailing opinion to the opinion of the zealots. If zealots only 

exert short range influence, then the control suggests the threshold for consensus 

~ E.xperiments were efficiently conducted in parallel on the GPC using the technique de-

~cribeJ iu [2] 
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would rcmniu dose to 0.5. Repc~1ting and averaging D number of indcpeudcnt trials 

fur a range of zealol den::;ilieb te,;t::; thi::; l!,vpolhe::-ib . .For each exp<:'riwenl and once 

the number of zealot;;: are determined, each zealot is assigned to random vertex 

in the network. V\-'e define the "critical zealot density" z~ as the initial zealot 

density that produces a consensus above .:, and for this experiment let .: = 0.5. 

This qunmity is computr:d in a stmightforwnrrl mannt~r nccording to Algorithm 1. 

Au example of th.i:::, wea:::,urerneut .i::; o,;hown .in ill F.ig. '1, where ll1e order provided lo 

the algorithm was a random permutation of the nodes .in the network. Surpr.is.ingly, 

we can see that z~ (approximately 0.074, shmvn by the dotted line:1 is nearly an 

order of magnitude lower than the density obserwd in the control. Zealots have a 

much higher influence on the outconH: thn.n t~xpw:t0d. 

Algorithm 1 Compute z* forD given order. 
1 Let (v1, L , vii' ) be an ordering of the vertJCes in the network 

min 

~- t. CONSENSUS,))> t 

procedure CON3ENSUS(i} 

nm an experiment with Xo as the initial configuration 

n1easure the consensus at the end .:of the eA1)erin1ent 

rPturn 1 ~. 1 L 8(2 -1~::1) 

10· end procedure 

~ ha~ length IFI 

> assign zealot;, based on order 
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Me~suring ~he criti~al zeal~ thres~old 

LO 
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zealot density 

~- J, Vn.rying Kdwork Snnctnre 

feet of the network med on the critical zealot den;;:ity. The \Vatts-Strogatz small 

world network [29] is a common way to explore how a model or phenomena is 

Affected by network strnctnre. ThiR model defines B rewire probBhility p, >vhich 

gcl!crnk8 nct1.'lorks th~tt tmn8ition bctwcC'n 1miformity (e.g., a ::.q11nrc lnttkC') mtd 

randornue::;o:;. From Fi.g. 5 we Ci:in ::;ee tlti:il the graph ha::; au i.ntt-reo:;ti.ug effect on the 

critical zealot thre,.hold. As the rewire probability i"' increa,.ed (and the network 

becomes more disorganized:! Z 1 increases quickly. However, thi"' threshold appears 

to level out and does not surpass 0.1, even for a fully disorganized network. From 

this ·,ve can COltdude that the network strunure has a siguificant effect on Z,, so 

::;ubDequeut experirnentc< cono:;ider a variety of network::;. 
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2.4 Influence rviaximization 

Inllu'O'uc.:'O' maximi~ation i:::: a u:::,eful applicatiou for uwdeb of opiniou dymunic:::: 

such as the one proposed in this paper. Given a model and network, influence 

maximization helps us find a small set of individuals t.hat. can precipitate a chane;e 

throughout the ent.ire network [8:. For the ze;i.lot dinwr automrtt.on model pro poRed 

in thib paper, the problem of iuiiuence rnaximi~ation lrau:::,lat,e., iuto fiw:ling the 

optimal set of nodes in the network that ;;:hould start as zealots in the initial 

confie;uration. Past research in influence maximization has shown that the e;reedy 

algorit.lun out.performs random selection as well as other heuristics based on social 

of the followiug experimeut i::; to determine wl1eU1er thi:::, re::::ult abo hold:::, for the 

zealot dimer automaton model. 

.!::lased on the experi1nent in tl1~ previous section, we k11ow that the struct.ure 

of the uetwork can l1ave a :::,iguificant e!Ted 011 tl1e con::::eu:=;uto llue::::hokl L,, even if 
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Table 1 1\etworks for Jnf1,1enc" :\1R.Ximization Experiment 

n:unc lVI lEI dct.a.i\c rcf(s) 

wiki-V(,t.P 71H~ ]1-rif\I~CJ who vot.P~ "" whom for \Vikip.ct'lia a.t'l- :17, Hi] 

mimhip dcctions 

ca Hepih [1877 :J:,<J98 High Energy Physics-Theory a~·Xiv 1181 

collaboration network 

ca-GrQc t·242 14496 General H.elativily ;md Wu:utlwn Co:;- 1181 

molugy arXiv collaburaliu11 uelwurk 

l-'ower Law Cluster h1(1(J0 29990 randon1 scale free network with m 1141 

J,p-0.1 

F.rr-lfoR-RPnyT ]1111("10 :1CJI'illl'> ra.nr-Jom EJ"ilph Wlt.h p = 1 2:1 ' 
w-J ''I 

V,."a t.T.:'- Sr.ro~R.t.z ]1111("10 2W•II(J ra.nr-lom smFtll worl.--1 nPt.work Wlt.h h= 1"'1 
9.p=0.2 

~ealot::: are dwDeH ramlornly. Therefore, r,he fullowiug experirneut con::::ider::: Deveral 

types of net\'mrks (see Table 1) as well as sewral different heuristics for influence 

maximization. Heuristics are based on centrality metrics from social network anal­

ysiR cemrrtlity: degree, cloRene:::R, rtnd betweenness [2S]. Degree centmlit.y simply 

Hte~\::.ures the w.1mbcr of neighbors adjacent ton given node. Closene'3S c:cntmlity 

i.b the i.uver::::e of tJH' average di.::-tauce fur a given node t,o all olher node::::. Bel ween-

ness centrality considers the fraction of all shortest paths that pass through a given 

node. Each of these metrics are measured for all nodes in the network to determine 

a ranking. These metric:; determine an ordering of the nodes in the network, which 

are used by Algorith111 1 to compute the crhical zealot d<2n::.ity resulting from that 

particular urderiug. 

These heuristics are compared agai11::.t a v;:,riation of the classical greedy algo-

rilhm for iullue11ce maximi:e-;atiou [S], adapted for u:::e with lhe ~ealol dimer automa-
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Table 2 S•_unm:o.ry of Results for Influence !V[aximization Experiment 

n:une betweenness randorn c\ocenesc degree greedy 

F.rrkoR RPny1 fj_,<;>; / 1n-2 1 1:1 X 1,-,-. 7_F,4 / 1 ·l-2 6.43 X 10- 2 ,'1_44 / 1•1-2 

V."attc Strogntz 6.00 ' 10 ' 6.23 ' 10 c 9.46 ' Fl ' 4.02 ' 10 c 3.!50 X 10 ' 
Power L~~w Cluster 9.1[1 ' 10-~ 1.14 X 10-: 1.20 ' w-2 9.00 X 10- 3 9.60 ' w-~ 

ca-GrQc 1.81 ' 10-2 9.82 10-2 5 30 " 10-~ 3.78 ' 
1[1-2 1.37 X 10-2 

ca-He(Jlh 1.04 10-2 8.22 10-2 1.73 >: 1[1-~ 8.00 X 1o-s 1.49 1•)-~ 

wiki- Vote 9.70 10-3 1.21 10-: 8.57 >: 1[1-3 8.15 X 10-3 1.14 1•)-~ 

ton model, which is outlined in Algorithm 2. This algorithm stan.s with an initial 

configuration },"o rmd 11. 'i\'t of Allow;thlc moves encoded in ,\I= { ( 1;1, rr1), ( 1!2, rr2) ... }, 

wl1<2re tl1t· kth. move d1anges the sr,ate of 11ode t'k to t:rk in the initial configura-

tion. In the simplest ca;;:e where we start with all opinion 1 and want to see how 

many opinion 2 zealots are needed to reach the critical threshold, we would let 

_X0 = ( 1, 1, ... , 1) and lt1 = {(i, -2) : i '-= ~--}. Algorithm 2 alRo requires an ohjec-

tive function ,z, to mi11imize. In this cnsc ¢ HW~\surcs the conscns11S by counting the 

Hmle,; i11 tl1e nelwurk not having upiuiun 2. llmo:; 

The re::.ullb of the curnpari::;on for each graph and heuri::;tic <ire -olwwn in Fig-

ure 6, and a summary of the critical zealot demities is provided in Table 2. Sur-

prisingly, no single heuristic nor the greed:-' al~orithm is a clear winner. though, 

the random heuristic usually results the \Vorst critical density. Another interesting 

feature se<2n in Figure 6 is that tl1t- greedy algorithn1 tt-nds to dominate the other 

l1euriDlic,; ei:irly i11 tl1e ::::irnuloliun, bul may uot be lhe fir::;l lo re<:~ch criticality. 
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Algorithm 2 Gret>dy cdgori.tluu fur i.nllu<:'IH..:<:' rnaxi.rni.~atioH for lhe ~ealut model 
1 Xo is the initial configuration of the network 

,pis an objective ftmction that sccores the configuration of the network 

,t[ is the list allowable moYes 

J\;J .= nuTeui raHdoJuuwHber generator ~lale 

while convergence criteria not n1et do I> can be an arbitra1-;v threEhokl E 

k+ ·- arp:min SCORF(X~_. k) 

(i,,_r) =M(k) 

<1 end while 

10: procedure :::com::(X, k) 

11. set random ntlll1ber genen.Xc)f state t•J 1'1 

12 (i,a) = M(k) 

13 XiJ) := o 

14 X:· =result of e),:periment ;vith initial input of X 

16· end procedure 

:2.0 Competitive Zealony and Polit.ical Polarization 

Realistically, we can expect to encounter both individuals who advocate for change, 

And those >vho resist it. Tn other words, we Rhonlcl inveRtigrtte Rcenrtrios where 

zealots me present for both opinions. Ckarly thC' outcome will depend on the 

ralio of theo:;e lwo lypeo:; of ~ei:ilol::-, but il mi:iy abo depe11d uu lhe toti:il 'tuautit:. 

of both t;{pes of zealots as \veil. Fig. 7) measures the consensus of the system for 

962 different pairs of zealot densities in the range from 0 to 0.3. For each pair, the 

experiment is rerun 100 times for a reasonable sample size. In t.his figure, a line 

is dr;:,·,vn showi11g wilen the consensus crosses 33% and 66%, which sep;:,rates the 

diagram inlo lhree dio:;ti.uct, regiuuD. 
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F ig. 6 The g:roody algorithm for influence maxim ization is compared against rankjngs based 

on social network analys is metrics for several different. graphs. 
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F ig. 7 Phase diagram for mult i zealot experi ment on Barabasi-Aibert network 
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If the consensus was solely dependent on tltc n1tio of competing zcalot8, 1.ve 

would expect lhe tr<:~Bbition between opinio11 1 e~,nd :2 to follow <:1 ::;lwight line who::;e 

slope was equal w the critical rativ. However, this transition follow;;: a curved line. 

Furthermore, >vhen the quantit-y of bot.h zealots passes a cert.ain threshold. the 

outcome becomes meta-stable (i.e., a stable combinat-ion of both opinions'!, which 

WC' refer to this as the ''nndecidC'd'' pktsC'). \Vhr:n the dr:nsity of opinion l zf'nlots 

ib low (e.g.,< 0.1), tlte :Jy::;tern dwOdeb only between red and blue. However, wilh 

high enough densities of red and blue zealot;;:, the system tend;;: to remain in an 

undecided state, with significant. amounts of both opinions present.. This suggests 

that this model may be applicable to phenomena like political polarization \vhere 

oppming opinions nw: h0ld by signifknnt frrtctions of the popnb.tion. 

To te,;t lhi::;, we apply tlte inllueuce maximization e~,lgorilhm for the zealol 

model to a dataset consi;;:ting of politically charged communications between users 

of social media :7J. In addition to containing a social net>vork. each node in the 

dataset is labeled as either left or right leaning, providing ground trmh about 

opinion:c that can he lf:w:mg0d. Applying infhwne:e mrtximizntion to this dn.t11:'-C't 

require,; ::;orne modificatiow:o c<iuce we are now lll<L"\.illlizing inl1ueuce for more than 

one target opinion. Fir;;:t, we assume that the initial configuration consists entire 

of some arbitrary t.hird opinion, thus Xu - (3, 3, .. , 3). Now, assuming that X-, is 

the tnrget confignmtion of opinions in thP network (i.e., the gronnd trnth), the 

objective function becomes 

<P ~ L 1- Silxil- Xr(i)'' 
iEV 

ami the bel of allowable rnove:J me M = {U. -X-r(i)) : ·it: V}. 
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OIS 

Fig. 8 default 

3 D iscussion 

4 Conclusions & Future Work 

T he dimer automaton model presented combines and s impliiles two variants mod-

els of opinion dynamics: the zealot model and the AB model. T he resulting coarsen-

ing phenomena is cw·vature driven, and is used to investigate innovaUon diffusion. 

Using t his model, we investigated some basic questions, namely, how many zealots 

are needed to reach consensus? The critical threshold of zealots required wss sig-

nificantly lower than 0.5, meaning only a few zealots in random locations in the 

network can s ignificantly influence the entire system. T his tlu:eshold depends on 

t he network structure and the initial placement of the zealots in the network. 

We a lso considered t he case where both opinions have zealots, and some com-

bination of zealots of both opinions leaves the system in an undecided state. Thus, 

t he presence of individuals who refuse to change (e.g., opinion 1 zealots) could be 

an explanation of why some innovations fail to take hold. 
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A further challenge is to then verify these results ngninst nctu~d dnta such 

a::. rn::uketing triab or el<:'ctioHb. Heal world data i::; ofl.eu iw..:ornpl<:'te or conlain::; 

uncertainty, so, an additional path for future work is to incorporate this into the 

model. perhaps b:-r biasing how edges are randoml:y chosen by the dimer automaton 

according to a given probability distribution. Additionally it may be reasonable to 

npgr;trle the morlel so Dn individwtl's stDtf: lies on some ::opectrnm between r,lw two 

extreruec< in:::tead of bei11g a t<l1arp dwice belweeu two oppo:::ing opiniou::.. Hopefully 

this can be done in a manner that preserves the simplicity and elegance of the 

original model. This approach may be necessary if the simple model presented in 

this paper is not sufficiently predictive for real world data and scenarios. 
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Abstract 

'Ve provide the n-channel extension of the unified ·workload capacity :3pace bounds for 

~(.anrlarrl parallel [H'IWC~~ing; ltl•1dclt-' with minimttm-t.irnc, maximttm-timc, and l-'inglc-LH.rgd 

self-terminating stopping rules. This extension enables powerful generalizations of this 

approach to multiple stopping rules and any number of channels of interest. Mapping the 

bounds •Jnt•J the unified capacity space enables a single plot t•J be used to compare the 

capacity coefficient values to the upper and lo\ver bounds on standard parallel processing 

in orrlPr t,(, makP dirPd inrPn-'ll('Pf' all(•tJt. Pxt rPmP \V<lrkJ<,arl capat·-it.y. 
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Generalized n-Channel \-Vorklnad Capacity Space 

The study of the combination of multiple sources of information is ubiquitous in 

multiple sources are the array items through which a participant must search, and 

complex decision making tasks in which multiple types rJf inftJrmati•Jn must be combined 

to make a good decision. One questioJn that often arises is the extent toJ •;vhich adding 

more sources of information affects the processing of each individual source. Fix example, 

omP mighL inquirP whH.hPr iL takPf-' longPr to dH.PrrninP t.hP prPf-'PllCP (of a particular (,lJjPct 

in a stimulus when there are more total objects in the stimulus. In this paper, vve refer to 

a cognitive system's response teo variations in the number of information seources as its 

workload capacity. 

One of the most commonly used measures of \Yorklcoad capacity is the !{ace IVlcodel 

Inequality (Miller, 1082), which gives an upper bound Cln the respo..•nse speed rJf a parallel 

processing model \Yith context invariance (defined below) for testing one versus two 

RCJlliTPf\ .->f infnrmat.inn uPing cunmlativP dif\trihutinn fnndionf\ (CDPR) in thP cont.Pxt of 

minimum-time, redundant target decisions. Subsequent to 1.-'liller:s paper: the basic logic 

of the !{ace 1\Je,dcl Inequality has been extended teo a develop lcower bound on 

minimum-time models as well as upper and lower CDF bounds for other stopping criteria 

(e.g., all infe,rmatieon must be prcocessed rather than any one source) and more sources of 

information (Grice et al., 198,1; Colonius ,~;,.: Yorberg, 19rH). Using a stmnger set of 

assumptions, together with a well-defined baseline model, Townsend and colleagues 

,-]privwl :m WJuality to tPf\t vvorkJc,ad cap:wit..v. tPrmwl thP cap::wit.v r:npfficiPnt (Tnwn::~Pnd 

&.:: Kozm:va, 1995; Townsend & \Venger: 2004; 13laha & Townsend, under review) . 

.l{ccenLiy, 'l~JWI18ClHJ ~\: EiddB ('2Ll11) int.ruduecd the nut.iun uf a uni1icd workload 

capacity space for plotting both the capacity coefficient and the CDF bounds on standard 

parallel JJruceBt:ing un t.he ::;arne plot. ::;pace. 'l'hiB wurk ::;ervcd tu tran::;furrn Lhc UJJpcr and 
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10\Yer bc•uncls on parallel prc•cessing from pr0bability space ( c•rdinate value::: bounded on 

[0, 1]) into the same unit-less axis as the capacity coefficient, with ordinate values bounded 

r)ll [tl +(>0). Pnwt.it:ally, Lhi~ lllliliPd f'p:-u:p allowt' illVPf't.ig-at.(d'f' (,(, dirPl'tly ('(•lTlparP i·n, the 

same plot capacity coefficient values with the bounds on standard parallel processing, 

which enables some estimation of rx•ssit>le extreme capacity values (very high super 

capacity, very low limited capacity), as well as some inferences about possible model 

architectures (e.g. violatic•n of the race model with super capacity implies a possible 

coactive model architecture). Unfortunately, Tmvnsend & Eidels (2011) limited their 

derivations to models with only t1vo possible operating channels. The capacity coefficients 

ilrP dPilnPd fnr n 2: 2 r:lw . .mwb (Tn\vn::;pn.-J & \\.TpngPr, 20CJ-t), ilf\ are thP CDF bc,unds nn 

standard parallel processing (Colonius & Vorberg, 1994), so the restriction ton 2 

channe-ls is an unnecessary limitation of the applieability f,)r the new unitied space. 

Herein, \Ve complete the derivation of the unified workload capacity space by 

extending the tran8formations of the parallel model bounds to the general case of n 

channels, where n 2 2. \Ve also provide the alternative versions for the unified space when 

the marginal distributions of the channels are assumed to be independent and identically 

,-]iRtrihutPd (lTD), which RPI"VPR tn ::~implifv the c:nmputatinnR. Finally. in acklition tn thP 

A::.JD and OR cases derived in previous work, we add the bounds for single-target 

scl[-t.cnninaLing prul'cssing, rcecntly iuLruduer_y_l in Blaha ('2U1U) and Blaha & 'l'uwnscnd 

(under review). 

\Vc usc t.hc fulluwing uutation LhruughuuL t.hc paper. Let. r::((t = P [:I;~~ t] f_.c t.hc 

CDF of response times for a system with the set of n active channels, C = { 1,. n}. To 

denr....t.e the CDF of a single channel c among the C channels, we use Fc,dt), and to denote 

thP procps::;ing .->fa Ringle c:hannPl (;alone (i.P. no other rJctivP dw . .nnPlR in thP mocJp] or 

n = 1), 1ve use Fc(t). \Ve use set minus notation C \ {c} to indicate the full set of channels 

C CXl't'pL C. 
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In this vmrk, standard parallel processing is used to refer t•J a processing system 

that exhibits independent channel distributions (no cross-talk, no statistical 

fat:ilit.aLi(•n/rlPgTarlat.i•Jn). Thi~ mP<lll~ t.hat. for an.v rHJmbPr (1f adivP drannPlf', t.hP CDF f(,l' 

all channels active simultaneously is the product of the marginal distributions, 

F-: (t) = TI~=l .f~,c(t). Additic•nally, standard parallel proeessing exhibits cc•ntext 

independence, or context invariance. This means that the marginal distribution of any 

given ehannel c is identically diet.ributed when any number of additional ehannele are also 

operating. \Ve denote this by Fc(t) = Fc.c(t). Funct.irJnally, this a!lrJws the individual 

channels to be estimated by single-target or single-feature conditions in an experiment, 

which nftpn VJ'PR..tl.v Pimplififfi tlw numhPr .->f cnnrlitinn::~ t.lw PXJWrimPntPr nPPrlP t.n t.PPt. in 

order to use these models. 

Additic•nally, we note that standard parallel proccesing is c,ften rcfcrrccl t.o as t.hc 

parallel race model: the parallel hrJrse-race model, or simply the race model (see, for 

example, f\.liller, 19~'2). This analogy speeitieally refers to the case when the tist ehanncl to 

finish processing is enough to make a resprJnse. This is the case of minimum time 

processing, also termed first-terminating stopping or an OR (logical OR-gate) stopping 

rulP. Thi::~ \Vnulrl hP thP Pt.npping ru]p Pn~;agPd in taPk::~ likP viPual PParc:h among rPclund::mt 

targets (no distractors) 1vhere the identification of the first target to be searched is enough 

tu L'/Jlllplet.e t.bc task. The sLaudard parallel rnudcl arehit.u:turc it: cngagr_y_l uudcr uther 

stopping rules, as 1vell, including exhaustiYe strJpping (last-terminating or logical AND 

stupping), and t.hc in-bd.\veen ('ase uf siuglc-t.argcL scl[-t.cnninaLing (S'l'-S'l') t:t.uppiug. In 

the former case, all channels must complete processing before a response is made. In the 

latter case, the completion of a specific eingle target ehannel ie enough to terminate the 

procPPPing, hut t.]w trJrgPt chanm~l may lw any nf thP n pn::~::~ihlP chmmp]p- fir::;t., lil;:.;t, or 

somewhere in between. Each of these stopping rules changes the form of the capacity 

L'JJetlieicuL and Lhe prcdi('t.iuns uf Lhe raec mudcl t_,uundB. BU \VC will pn_'BUIL t.hc dcrivatiuu 
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of the b•Juwls in unified vmrkload capacity space for each model in turn. 

Before we get into the derivation of the unified response time bounds: we want to 

natural logarithm of those functions produce negative values. Thus: cumulative reverse 

hazard functions (natural log of the CDF) exiet. on the range (-c::->..::J,U:, as do the natural 

logarithms of any bounds formed by a single CDF or products of CDFs (sums of CDFs 

can range abcove L and so the natural lcog can exist C•ll (- x;, +x)). These negative values 

will influence the derivatirJn of inequality chains throughout this paper. N .. •te also that the 

cumulative hazard function used in the minimum time bounds, is found as the negative 

natural lng nf thP ::;urvivor functinn, rmd Pn it PXiPtP rm thP rang-P [CJ, tcx.·), ]paving- fP\YPr 

negative signs to track in those proofs. 

l\1inimum Time Bounds 

LcL Fc(t) = P :miuc(Tc) ~ t], fur all real t 2 0 and c ·:: C, L•c t.hc CDF fur an 

n-channel system operating under a minimum time stopping rule, where t? - { L ... , n} is 

Lhc set. u[ all JJUssiblc du.tunclt:. Ddiuc _/1('\-:i:· (t) = P ~min-c\-:i} '1~ ~ t] as Lhc CDF if all 

channels except ·i are running, and define Fc\-_if (t) - P ~minC\,:U. Tc.:::::, t], if j, for the 

CDF of all channels but i and j. Further, define the survivor function as Sl:(t) = 1- Fc(t). 

We measure the amount c,f >vork completed in each channel c with the cumulative 

hazard function: defined as: 

which can easily be estimated directly from the empirical response time survivor function 

fc•r any experimental mndition. 

The capacity coefficient for minimum time (first-terminating, OR) processing for an 

n-clJaJ]J]('] Jl](l•lcl i:-; ddlncrl at' a rat.i<) <)r t'.\Jllllllativc hazar.] ruJwLi(ofl[' (T(o\VTll'CJJ(l N 
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Nozawa, 1095; Towneend 8.: \Venger, 2001): 

, . Hc(t) 
Ccm(t)~'\'" H(f). 

L-<c-1 c ' 

The numeratrJr in Equation 1 is the ')bserved pn_•cessing of n active channels, while the 

denominator is the prediction of a benchmark standard parallel processing model, 

Pxhihiting iwlPpPndPnr:P :mel, in thiP t.Pnninnl•og_y, unlimit.wl r:aprwit._y. Thn::~, c:."!.par:ity iP 

qualitatively inferred relative to a ratio equal to 1, which is where observed processing is 

equal tu the L•cnehrnark mudd predict.iun and unlimited capaeil.y iB concluded. Ir 

Co_~--Jt) > 1, then super capacity, or better-than-benchmark, perfrJrmance is inferred. And 

if C'oR.(t) < L then limited capacity, \Vorse-than-benchmark performance, is inferred_! 

ThP r>rigin<ll rar:P mox]p] CDF honncl hy 1\:fi]]pr (19.S2) prnviclPcl an uppPr hnnnd on 

the CDF from the parallel, minimum-time model with n = :2 channels given by 

( 1984) introduced the concept of a lo\\'er bound for the same processing model, which is 

Colonius &:: Vorberg (1991) provided then-channel generalization of both CDF 

bounds on parallel minimum-time pr.-Jcessing in the inequality chain 

max [Fe. :•! (t)] :S Fc(l) :S min [F.':·:; (I)+ Fe. !jJ(I)- Fc;!i;! (t)]. (2) 
' .• •J .. . ' 

Theorem 1. L'he unified 1mrkload capacity space int'quality chain for the capacity of an 

Proof. Ftom Equation 1, CoR(t) * lnj-n~= 1 Sc(t)} = lnj.Sc(t)}. Rewrite the upper b')UIKl 

from Equation :2 in terms of the survivor functions to get 

S'c(t) 2 max 
•,J 

(L)- Sc.:j)(t)- ( 1) l . 
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It foJ!lowe that 

n 

Cokltl' ln{IJ S,(t)} 21n{max 
c-1 

1
'
1 

(I)+ (I)- Sc,(i,jjltl]) 

Similarly: rewrite the lower bound of Equation :2 as 

and it follows that 

min (tJ1 > Sc(l) 

C'oR(I) * lnfiJ 8,(1)} S ln(m,inlSc\{i)(t)j) 
c=1 

ln{mini [sl'\{d(t)]} 
::::}- CoR ( l) 2 -;'---cn'""~-;e-7-c;~ 

ln{fJc~ 1 S'c(t)} 

Under the assumption that. the marginal distributicons fc,r cac.h channel arc llD, then 

all Fn { i} ( t) are the same for an~- choice of ·i E C and we can write thie ae Fe\ _1 J ( t) to 

denc•te the CDF fc•r n 1 active channels. Similarly, the llD assumption means the 

Fe\ r U} ( t) are the same for any choice of ·i 1 j ,:::- C, and we write thie ae Fe.,: L2} ( t) for the 

CDF with n- 2 actiYe channels. Consequently, Equation :2 simplifies to (Colonius & 

VorhPrg, HJ04) 

(4) 

Lemma 1. H'hen the marginal di .. <tributions of the parallel model are IID 1 the unified 

1mrkload capacity space inequality chain for the capacity of an n-channcl, minirnum-tirn-c 

system t!:i de.finfd by 

(5) 

The pn_•of (_--,f Lemma 1 is similar to the pr\.•of (_--,f The\.•rem 1 and is left. to the reader. 
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l\·1aximum Time Bounds 

Let Gc (t) P [nw:cc (Tc) _::::: t], where again C 11 .... 1 n} is the set of all n channels 

<-lllrl c ,:: {:, \!(' t.hc ('ttrnulat.iv<' rli:..;Lril•ut.i•m funct.i•m (,f n::..;ptll\:'1(' Lim(::-:; [(,r HI! 11.-l'lmnJ\('l 

system under a maximum time (logical AND, exhaustive) stopping rule.2 

ln order for the capacity coefficient inferences trJ be consistent with those for 

Equation L we utilize the cumulative reverse hazard function to measure the \vork 

throughput for each channel in under the maximum-time stopping rule (for a full 

The cumulative reYerse hazard function for processing channel c is given b~v 

which) again: can easily be estimated directly from the empirical response time CDF for 

<lll.)' PXpPriTllPJll.a] ('(•Jldit.i•Hl. 

The capacity coefficient for maximum time processing is defined as (Townsend S.: 

Wenger, 21JLI4) 

(6) 

The numerator in the Al\'D case is the prediction of the benchmark unlimited capacity, 

independent parallel model, ·while the denominator is the observed processing of n 

channels under the maximum-time stopping rule. Capacity inferences, again, are relative 

to the value C'AND(l) = 1, which indicates unlimited capacity. C'Al\D(l) > 1 indicates super 

capacity processing, and CA:--m(t) < 1 indicates limited capacity processing. 

D<'rivcd h,v c(,]<mitl:-1 S"· V(•rlH'rg ("19~14-), Lhe general \!(•Und~ f·n· n ('Xhau~t.ivcly 

processed channels are 

max 
',J 

It) J , 17) 
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Theorem 2. Thf 'nnifiul ·workload cuprrcity .-;par:f inurualdy chum for lht: r:apuc'/.ly of an 

n-channel, ma:rimum-tiou system is, for-i"!::- j,. 

(S) 

Proof Ftom Equation G, CAND(l) * lnj'GcUn = lnUl~=l Gc(l)}. Utilizing Equation 7, it 

folki\\'S that, for the upper bound 

=e ln{!l G,(t)) <: CANo(t) 'ln(mln (tl]) 
c=l 

Sim ilarl.v, for t.hP ]o)WPr hound, 

0).1'\D(t) * ln{Gc(t)} :2_ C'A~·m(t) * ln{rqax 
t,) 

n 

Under the assumption that the marginal dist.ributi•Jns f•Jr each channel are TID, fc•r 

any choice of i c C, all (t) are the same and for any choice of i-,) "= C: all It) 

are the same. Vi/e write these as Gn_{ 1· (l) and G,>,{t,21 (t). for n -1 and n- 2 active 

processing channel systems: respectively. It follows that Equation 7 simplifies to (Colonius 

& Vurbcr~, 199"): 

-2,G~uldt)-G" l"'(t)] <G--(t'1 <G- 1d), 
- ,, ·' J L-\-. -~J - '- '- L-\-. J 

(9) 
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Lemma 2. TtVhen the 'mv.,rynwJ 1h.<~lrdmhcms of the pnralltl 'rnodtl u.Je liD, the ·wwj7ed 

v_)orkload capacity space inequality chain for the capacity of an n-channcl, maximum-tirne 

sy.-:;tem i.~ defined hy 

lni2 * 
ln(O~-l Gc(f)} ln{0~- 1 C.'c(t)J 

'' CAND(t) < -;-'+0c--'-7C-CC 
:1} (t)- Gc\),2] (t)} ln{Gc\[ 1] (t)} 

(10) 

The proof of Lemma 2 is similar to the proof of Theorem 2 and is left to the reader. 

Single-Target Self-Terminating Bounds 

Blahn (2lll D) n~c:Pnt ly introrlnc:ed a nP\V r:apneity c:oPffir:iPnt for ST-ST prnc:P:"l:"ling, 

with full details explicated in Blaha S..:: Townsend (under reviel:~,'). For completeness 1vith 

respcel. t.u t.bc result.::; in Towm;cnd & Eidcls C21Jll), \VC here give the S'l'-S'l' parallel 

processing CDF bounds for both n = 2-channel models and n 2_ 2-channel models. 

Let F~.;.c(t) = P [T~.;,c < t] denote the CDF of response times ftJr target channel 

k t= e. Let Kk.c(/,) = f,t_0 ~'·~;~~dT = ln(Fk.c(t)) be the cumulative reverse hazard 

function ftJr target channel k '== C. 

ThP r:<1paeity c:oPffic:iPnt fc,r ST-ST prnc:PRRing i::: cJpfinPrl <lR (Blaha, 2010; Blaha fV 

Townsend, under review) 

C· { _ Kk(t) 
·STST()- Kc,·(t) 

The benchmark parallel model is in the numerator of CsTsT(t), and the observed 

processing C•f target channel k among n active channcle ie in the denominatc•r. The 

(11) 

inferences about unlimited, limited, and super capacity are the same as the OR and AND 

models. 

The bounds rJn ST-ST pmcessing are 

(12) 
C-1 C-1 
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Fc•r n = 2 ehannele, \Yith the two channele denoted C = { 1, 2}, the bounds simplify t0 

Theorem 3. The 1_mijied workload capr<.city spa'-:e iTWJuality chmn for the r_;apanty of an 

n-channel, single-target self-terminating system is, 

(13) 

The pn __ --.of (__--.f The(__•rem 3 is nearly identical trJ the pro(__•f of Theorem 2, substituting 

the capacity coefficient and bounds for ST-ST capacity in for those of maximum-time 

procPPPing. 

Under the assumption that the marginal distributions for each channel are IID, 1--ve 

llf'P LhP CDF ·l a ~iJJglP t:h:-I.TlllPl ,; E e, and rPwritP E!ptat.i•m "12 <l~ 

(14) 

Lennn:::t :1. lVhfOn lhe ·mnry·nw.lrh.~·lriJwfi.mos rz.no JJTJ. lhro muJ"U-d cnpor:tly spnr;r-; hmuuls for 

S'T-S'T processing are 

ln{Fk(t) I ln{Fk(t)l 
S Csrsr( t) S ;-;-'-~-7-:;-c 

n"' ln{Fc(t)} ln{n * Fc(t)} · 
( 1 c) 

ThP prnnf nf thi::~ i::; trivial :mel ]pft t.--. tlw rPadPr. 

Conclusion 

\Ve have provided the straight-forward extension of the unified workload capacity 

::;paec t__,Jund::; fur ::;Laudard parallel prul'c::;::;iug [rum Lhc limiLcd cxi::;ting ddluiLiun::; fur 

r1 2 channels giYen in Townsend & Eidels ( 2011) to the full --r1 2_ 2-channel situation for 
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minimum-time, maximum-time, and single-target self-terminating stc•pping rules. The full 

set of bounds, including all special cases considered to date, are summarized in Table 1. 

Thif' Pxt.Pnf'i•m PnalJ]p~ pu\vPrrul VPnPralizaLi(•JW (•r thif' appr<ladJ L<l rnultiplP c;t.opping ru]pc; 

and any number of channels of interest, in order to model the complete processing 

mechanisms fc•r an experiment c•f interest. fl.-lapping the bounds onto the unified capaeity 

space for any number of channels enables a single plot to be used to compare the capaci(v 

coeffieient values to the upper and lower bc•tmds c•n standard parallel processing in order 

to make more direct inferences about extreme capacity values. 
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Footnotes 

1 \Ve note that appropriate statistical tests for inferences about Ccm(t) are available 

(H(•UpL N T(•Wn~cnd. 2012), huL their rleLai\:'1 are hc.v(•nrl !.he :'\('(,[JC (or !.hi~ papn. 

:2Note that the change in notation here is to simp!~' help the reader distinguish the 

CDFs for minimum- and maximum-time stopping rules. 
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Table 1 

,)~ummary of all Bounds on the Capacity Cot'.fficicnt 

Stopping Rule 

OR 

STST 

AND 

Stopping Rule 

OR 

STST 

AND 

LOWER BOUNDS 

n-channels 

h1[ min; [S'.:\··qlt):} 
Jn{IL=t Sc(tl} 

n liD channels 

In:Sc\it]ltl 

ln{lL= 1SL(t)} 

ln-'F:-(t'l: 
ndn~i',(t)~ 

UPPER DOU!\DS 

n-channels 

lnl mruc:,J [ Sc , {;} ( t) -Sc'\ { q (t)- Seq , i} (t): } 
ln{f1~'= 1 S',-(t)J-

ln{O.'.' , Gc(tn 

In~ min; [Oc, li) (t)j1 

n liD channels 

ln{b-Sc\{t) (t) S'c\{t;,:: (t)} 
ln{f1~'= 1 S,-(t)} 

ln-iFk(t'i} 
lnlrH.f,(l)J-

In--n~ 1 Oc(t'l} 
h1{Cc\{1Jt): 

2 channels 

lu-_u.Uu:s1 (J),S~(t)] ~ 

Jn{ 5: (t)vS'2(t)} 

lnfO~(t)AO~(t)} 

ln-iG~(t)+G2(t) 1--

2 channels 

In{ S; (t)+S' ;.IJ) -1 ~ 
In{ S, (thS'~tt)} 

In{ C: ~ (t)AG~ (t)} 
ln~m..in[Gt (t),G;. (t)[ 
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ABSTRACT 

Principal Components Analysis. Multidimensional Scaling, and 
other adwmced dimension reduction techniques •tre often used to 
to help visualize complex multivariate datasets. However, these vi­
sualizations reduce observations to a cloud ~1f points, which miy 
stop short of conveying more the interesting topological relation­
ships preseut. Our cuutribuliou is P2P2, a HH.xlubrr framework for 
transfonning a set of points or observations into a visualization that 
coiNeys information about the simplicial complexes present in the 
dataset. The framework is iJh~tracted in a manner that open source 
Pyihon packages are be leveraged to perform the computational 
''heavy lifting." In <icldition to making this framework accessible 
to a much wider audience. this allows a more sophisticated com­
poueut tv replace ue;uly auy portiou of tl1e pipeliue. Au additivual 
contribution of this work is a robust method for computing a global 
distance tl1reshold that is grounded in information theory and com­
plex network theory. 

Tndex Te1·ms: G.2.2 [Discrete M8thematics]: Gr8ph Theory­
Graph Algorithms; H.l.2 [lntormation Systems]: User/Machine 
Systems-Human infomw.ti~1n processing: 

INTRODUCTION 

M Al\"Y prohlems in data amlytics revolve around discovering 
useful ins1ghts from a set of observations. However. obser­

vati~lllS could take ollmally differelll forms gi;·ell tl1e colltexl. For 
example, observations could consist of sets of points embedded in 
high dimeusiullal ~pace. Or, observe>tivu~ could be mee>sured as a 
mCJtrix of similarities hetween other ol1servation~. Futihermore. oh­
servations could be represented as a network of relationships be­
tween other ohservations. Additionally, e8ch ohsen•Jtion might 
also be labeled with some kind of descriptive attribute or class (e.g., 
rmn/woman, young/old. ~ick!he.-Jthy. etc.). 

Given a set of observations, useful insights we may wish to gain 
can l1e answers to questions like: 

• Which ohRervations are "nonnCJJ" and which are '\1utliers?" 
Do observations group together, and how are those groups 
related·? e>lld 

• What is the relationship between classes and observations? 

There are many sophisticated techniques from machine learning, 
statistic~. cvmplex uelwurk allalysis, aud other Jields tlml call be 
Cipplied to help answer the CJhove questions. However it is usuCJlly 
the case that specific criteria about the data and the allS\Ver being 
~ought mu~t he met hefore any technique cCJn he effectively lever­
aged. I'or this reason, visual analytics can be employed to obtain 
&n overview or basic intuition about 8 cl8.tasd before more sophi~ti­
cated techniques are applied. 

'PA# 

tNatiun<tl Re~ear~h Cunn..:il R~~itlent Re~~ardt As~l•dat~ 
tc-mail: du 'tin .arC'ndt .ctr@.us.>lf.mil 

Many of the popular tools for dimension rednctim1 and embed­
ding assume the problem is solved once the set of observations 
have heen suitahly mapped into the desired lower dimension. Fur­
thermore, many algotithms te.g .. lsomap, Locally Linear Embed­
dillg. Spectral Embeddillg) rely VII deterw..iiiiiJg tl1e Ilearesl Ileigh­
bors for observations, which induces a graph from the set of obser­
valimm. Hvwever, tlri~ graph. though it may COII!aill useful illfvr­
mation about the underlying topology of the dataset, is not often 
represented in the Yisualization. One contribution ot P2P2 is that it 
goes beyond simplv detemlining a good placement for each vcnex: 
P2P'· also detennilles how to approptiately fill in the space in be­
fh'PPn p,)ints hasecl ,)nth~ topology ,)fthe underlying ohserv:ition~. 

Towards this end. tills paper presents a general methodology for 
data visualiZ<ition that can be applied broadly to m&ny of the clif­
ferem types of observations described above. Recently there has a 
beell sigiiificaiit improvemellls ill the e>vcrilability. quality. e>lld ease 
of use of open source tools for scientific computing and cl1.ta anal­
ysis, especially for the Python scripting language. ln this paper we 
also highlight how seveml open ~0mce pacbges can he com hi ned 
to perform nearly all of the "heavy lifting" required to implement 
this pipeline. Aside from m&king the proposed visualization tech­
nique accessible to a wider audience, reliance on open source soft­
ware in this m&nner iibstmcts the visualization pipeline in & w&y 
that is easily extensible. It is straightforward to plug in a different 
algoritli111 a! tl1e user's discretioll fvr ally ~1f tl1e ul.a:irJ ~teps ill the 
pipeline. 

2 BACKGROUND & RELATED WORK 

The problem of how to best display a set of (possibly high climen­
siollal) observatiolls ill a low dimellsivllal space is su fulldamelltal 
to understancling scientific datasets that the basic techniques have 
beell used fvr decades. Fvr tllis l}]Je of problem we have a dataset 
X consisting of n p-dimensional obsen·ations, where x1 1::: Jl?P. One 
such technique 1s Principal Components Analysis (PCA), where a 
set of high dimensional points .rre rotated in a 1n.anner that gives 
the leading components the most amount of variance [9]. PCA 
can he usecl :iS a data visu:ilizatinn .:mel e'l{p]omtion tool; wl1en tl1~ 
number of principal components is 2 or 3. the points can be ren­
dered VII the screeii to reveal rele>tivll~llips witl1ii1 tlre data. PCA 
can also be used simply as a dimension reduction technique for 
preprvces~iiig befvre the dala is tackled by otl1er e>lguritlm.lli. :\-iul­
tidimensional scCJling (MDS) addres~es 8 prohlem similar to PCA. 
but assumes that only the distances between points are known [3]. 
In other word~. the data~ets J) consi~ts of n ohsen·ations of n di­
mensions where d,1 is the observed distance between observation 
i 8lld j. Such data could &J.ise from preference questionnaires. for 
example. Essentially. MDS algorithms attempt to rnininllze the dis­
crepallcy betweell tl1e dis!auces ~ep:rraliug the embedded poiuls alld 
the distances given in the input. 

Mauy ~1tl1er lechuique~ exist tl1at imprvve vu PCA or MDS ill 
some way, with one of the most popular techniques being Isomap 
[17]. Tills alg01ithm constructs a graph connecting tl1e closest ob­
servations to each other, and then the ge\xlesic distances hetween 
these neighboring observations is used to detemllne a suitable lower 
dimeusioual embeddiug. Otl1er ~mbeddiug tedurique:s iudude Lo­
cally Linear Embedcling [14], Laplacian Eigenmaps [2]. and Spec-
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tr:.1l Embedding [II). All of llte tcclmiques discussed above are 
avail:ll>le in I he Srikit-l~am py1hon package for machine learning 
[13). 

Suppo:,c that in addition to having a set of ol>serval.ions X. tl.at 
we also have a corresponding lal>el lo r each observation Y, where 
y; E Z. Visual analytics can help us discover if there is any meaning­
ful relalionsbip between X andY. When we wish to learn a function 
f X .....; Y lhat accurately predicts )'; from x1, this is referred to as 
.•upervi.•ed leaming, (specifically classificmion when Y is d iscre1e) 
[15). Since ll1is is such a common task. some researchers have de· 
veloped algorilluns lhat lake into account both X ru1d Y when deter­
mining the embedding, w11h one well known example being t-SNE 
[18]. 

3 METHODS &. RESULTS 

Given one of the following: 

• X, n set of multivariate observntions, where .\'; c IRP. 
• D a lllltllix of dissiiiJilaritics betw.:cn obscn'ations. or 
• v = (V, e) a graph repn:sentin.g the relationships between ob· 

servaLions. 
one of our goals is 10 detcnuine an effeclive two-dimensional em­
bedding of ll1c observations. P, where p; is the (x,y) coordinale of 
obscn"<tlion i in lhc visualization. Our approach. P2P~, bttilds on 
the realization lhat sever<~l relal.ed modern algorithms compute tbe 
nearest neighoors of observations. T hus, then: appears to be a very 
natural progression of X ~ D >-+ G ~ P tbal will yield an effec­
tive visualization. Furthermore, at dlis level of abstraction, one can 
see lhat tbe same algorillun can be used regardless whether we stl\11 
witb X, D, or C-when we do not slart witb X, we are simply short­
cutting lhe pipeline. Furlhermorc. each 111apping in the pipeline is 
easily implemented w1th an open source Python package function 
calL making Lbe mappings interchangeable with olher algorithms 
according to one's preference. 

However. we do not stOp once P is computed, noting thai. G 
may have additional structure tbat can be conveyed effectively in 
a visualization. Specifically, G may conlain a number of c liques 
(i.e .. complel.e subgraphs). and we believe 1ha1. rendering cliques as 
filled-in polygons tnstead of as the traditional node-link style im­
proves the usability of lhe visualization. One reason for this belief 
is 1hat a significant nwnber of edges can be replaced with a single 
uniform polygon; a clique of size 1:. would have be drawn ask(k-1) 
edges, hm wou ld be replaced with a polygon having at most II.- l 
edges. The color of lhe polygon can encode lhe size of the clique 
so lhat. density infonnalion can be g leaned from lhe visuali'l.ation at 
a glance. 

Givt::n Lhe ~eL of maximal clique~ C and an tu•bt:dt.li.ng of the 
observations P, it is necesS3ty to compute tbe convex bull of each 
clique in order to render each clique as a polygon. This is because 
P aclllally defines a projeclion of the simplex corresponding 10 lhat 
clique into a lower dimensional space. As a result of lhis projection, 
some of tl1e vertices in lhe simplex may end up as interior poinls. 
Computing lheconvex hull of the clique g iven P will identify which 
vertices are on tl1e true l>oundruy of the projected polygon. 

The entirety P2P2 procedure is described in Algoritbm I, and a 
desctiption of open source function calls made by P2P2 is shown 
in Table I. The results of applying J>2p2 to are shown in Fig­
ures I. 2, and 3. Figure I illustrates how computing lhe convex 
hulls of cliques might improve lhe usability of lhe visuali7..alion by 
reducing the number of edges dr.lwn, and fi lling in some of the neg­
aLive space. 

Figure 2 shows how choosing lhe d istance I!Jreshold £ affccls tbe 
visualization. When e is trivially small, no observations are con sid­
ered neighbors, which res11lts in a c.ompletely discoonected graph. 
As c increases more of Lhc underlying stmcturc becomes evident, 
un1il evenrually ~o: is large enough that all observations are consid­
ered neighl>ors and belong to a single clique. Clearly a value t<:>r £ 

Lhm is ':just right" must lie somewhere bet\\reen these two extremes, 
which have lillie t11ili1y. We provide a way 10 com pule a solwion 10 
this "Goldilocks" problem, which is delailed in Section 4.2. 

Figurt: 3 ~hows P2P2 applied Lu a largt::r nmltivarial.e datast:Lit(r 
J'Csenting over 1000 band drawn dtgits. 

Algorilhm I Basic outline of tbe P2P2 abstraction 

1: slart with X, a 11 x m matrix of points 
2: find (or slrut wilh) D. a 11 x 11man·ix of dislruJCes between points 
3: find £. a g lobal disl:tncc lhreshold 
4: find (or start wilh) G. a graph induced from D and c 
5: find P, an embedding of r., D, oo· X in R2 

&. find C, the set of maximal cliques in G 
7: find H. lhe convex bulb of each clique inC given P 
8: draw eacb hull in 11 as a 2-D polygon 

Figure 1: Comparison of a typical node-link rendering of a network 
(l<lh) vgrsus th<l P2Pl gmoollishmgnt (right). Th<l graph dala is from 
the Zachary's karate club nelwork (19] which can be accessed w~h 
networkx.karate club graph . 

4 DISCUSSION 

4.1 Co n sid eratio ns for Large Oata sets 

The X -+ D mapping will create scalability issues when XI is large; 
when lhe number of observa1ions is becomes much greater lhan 
10" lhe average machine will not have sufficient memory to slore 
D. which grows as O(IX 2 ). ·ro address Ibis issue. one can instead 
map X directly to G by leveraging SOphisticated data slructures like 
lhc KDTrcc. Foo· example. Scipy's KDTrec allows for the efficient 
compu1a1ion of k-e neighbors (the k nearest neighbors with a dis­
lance less 1hru1 t) given a set of poinls, X. However, 1l1c KDTree 
can becon1es inefficien1 when the number of dimensions are high 
(e.g., > 15 tor lhis case). So when lhe dataset is both large and 
high dimensional. a reasonable solution to lhis problem is to use a 
fasl dunension reduction technique like PCA to reduce lhe number 
of dimensions in X down to a traclablc number. hopefully without 
much loss in accuracy. 

4.2 Choosing e 
P2P1 maps an X or D to a graph lhrough lhc application of an ar· 
bitrary d ist.ance lhreshold. Clearly this threshold can have a sign ifi­
cant detrimenlal effect to the usabilily of the visualization if chosen 
poorly. as demonsU"dtcd wilh Figure 2. So we outline here a melhod 
for dctennining a good choice for£ wi1!1 a solid basis from infor­
mation ll1eory rutd complex network 111cory. f.irsl. we assume tl1at 
we have a sel of class labels Y cotresponding 10 each observation 
in X or D. The intuiljon foo· choosing a good value of c is that the 
edges in the graph induced by~; should have edges thai. are likely to 
connect observations wilh lhe s:une label. 'Ibis is often referred to 
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Table 1: P2P1 Open Source Function Calls 
step function call description 
1,5 sklearn.decornposition.PCA dimension reduction (usc for large, high dimensional dmasets) or as a 

vertex embedder 
2 scipy.spatial.dislance.pclisl com pule the dislance between all pairs of poinL~ (many dis1ance nonns 

available to choose from) 
scipy.optimization.minimize...scalar scalar mi.u.imization of objective (use bounded=True with 

boullds=(O, &mu)- see Eqn. 7) 
4 scipy.spatiai.KDTree efficient computation of k-e neighbors (use for large datasets. but only 

implemenled for Lp norms) 
4 networkx.Graph create a graph dala struct11re a list of edges (from neareSt neighbors) or 

an adjacency matrix (from llu-esholded dis1ance malrix) 
5 networkx.draw _graph viZ compute 2-d spatial embedding for graph vertices (use "sfdp'' option fo.-

very large graphs) 
5 sklearn.rnanifold.MDS embed ve11ices into llt2 directly from D 
6 nt:Lworkx.fimldiqut::s find maximally COIUit:elt:d t:Of_IIJX>Il~Ols (e.g., co•uplele subgraphs) 
7 scipy.spatiai.ConvexHuU ·'n •bber band" fit to a set of points in order to omit intenor points from 

U1e projection of U1e simplex 
S matploUib.collections.PolyCoUoction render polygons 

ref 
[9. 13] 

(10) 

[4. 10] 

[10] 

[7] 

(6J 

[3. 13) 
[5. 7] 

( 1.10) 

[S] 

Figure 2: P2P2 visualization of the Iris classification dataset with 
e varying linearly from the minimum to maximum e uclidean dis­
lance between observations . The data can be accessed with 
sklearn.datasets.load iris . 

Figure 3: P2P2 visualiZation of the Digits classification dataset . The 
digits dataset can be accessed with sktearn .datas91s.load_dig ils . 

as "assortative mixing.'' or the tendency for adjacenl nodes in a nel­
work to have the same properties [12 ], and a number of techniques 
exisL 1.0 measure iL 

Classically, assortative mixing is measured with statistical corre­
lalioual techniques. which has several known issues. RecenLiy in­
formation theory, specifically mutual infonnalion bas proven 10 be a 
usefult.ool for underStanding complex networks, including the phe­
nomenon ofassortalive mixing (16]. Thus, our measure forasm·ta­
tivc mix.ing is based on the mutual information l (E;A), where£ and 
A are Boolean random variables corresponding to two nodes having 
equal slate. and two nodes being adjacent, respectively. f (H;A) is 

fow1d as follows: 

I(E;A) ~ 11(£}-11(EIA), (I) 

and 

11(£1A) = P(A = l)· 11(£ 1A = l)+P(A = 0) H(£ ~4 = 0), (2) 

where 11 is the entropy of an arbitrary probabiliry distribution X. 
The following prooobilities are dirocl.ly measured given G = (V, E) 
and X, the network and t11e slate of the nodes on the network, re-
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spectively. 

P(E = 1) 

P(A= 1) 

P(E = !lA= 1) 

1 - L ci(ci -1), 
niEn 

2m 

n(n+1)' 

L o(y"-Yv), 
(",v)EE 

(3) 

(4) 

(5) 

where n = lVI. m =lEI. Ci = Ej o(yj- i) (which sirrply counts the 
number of nodes in the graph with class i\ Q is the set of unique 
classes in Y, and o is the Dirac delta function. The remaining; quan­
tity that is not immediately found due to the law of total probability 
io 

P(E = lf4. = O) = n[P(E = 1~E = 1IA= 1)]. (6) 
2 -m 

Note that corrputing; I(E;A) scales effectively with the size of the 
dataset since, the most expensive computation loops over the ed&e 
set, requiring; only O(m) time to corrplete. 

The ideal distance threshold is 

s, = arg;max J (~(X, s),Y), 
e 

where~(X,s) induces a g;raph from the set of observations X and a 
givens, and J(G,Y) computes the assortative mixing; of the graph 
G with corresponding; labels Y. The optimization prog;ram can be 
bounded to (O,emax) where 

(7) 

If X is lar&e (e.g;., lXI > 103 ) then a smaller random subset of X 
should be a sufficient replacement for X to corrpute Sma,;. 

One subtle issue is that because mutual information must be pos­
itive, then both H(A) and H(E) are upper bounds of I(E;A). As we 
vary 8, we can expect H (E) to remain constant~ however as we in­
creases, the density of the graph also increases, causing; H(A) to 
increase until the density of the g;raph reaches 112. Therefore, a 
fairer way to corrpare the mixing; of two g;raphs that have different 
densities would be to normalize the mutual information by H(A). 
Fig;ure 4 shows the beneficial effect this normalization has on the 
mixing; scores for the digrts dataset. When I(E ;A) is normalized by 
H(A), the optimal value of s decreases. 

5 CONCLUSIONS & FUTURE WORK 

Conclusion 
For future work we intend to implement P2P2 in an immersive 

3-D virtual environment. From an alg;crithmic standpoint, making; 
this jurrp is nearly trivial due to the modular nature of P2P2 One 
must sirrply exchan&e the current graph drawing; alg;crithm with 
one that embeds vertices into 3-D (or, alternatively use MDS or 
PCA to project X or D into 3 instead of 2 dimensions). Furthermore, 
the convex hull alg;crithm also generalizes to 3 dimensions, where 
polyg;ons are sirrply sets of triangles instead of line seg;ments. The 
main effort in the irrplementation in the virtual environment will be 
in an effective interface for exploratory visual analytics, as well as 
effective volume rendering; of the 3-d convex hulls. 
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Abstract 

A continuing hurdle in the cognitive modeling of human­
computer interaction is the difficulty with allowing models 
to intcmct with the ~arne interfaces as the user. Multiple at­
tempts have hccn made to add thi~ functionality (e.g .. Hope. 
SchocJles, & Gray, 2014) in limited dmnains. This P•lpcr 
presents a solution allowing models to interact with web 
browser-based software, while requiring little modification to 
the task code. Simplified Interfacing for Modeling Cognition 
- JavaScript (SIMCog-JS) allows the modeler to specify how 
dements in the interface are translated into ACT-R chunks. 
allows keylloard <Jml mouse inter<Jction with .LivaScript code. 
and allows sending ACT-R comm<Jml" from the external sofi­
WfJre (e.g., to <Jdd imtrnction~). The henefits, dmwhacks. <Jnd 
future functiomlity of STMC'og-.IS are discu~sed. 

Keywonh;: Cognitive Architectures; Task Interface: ACT-R: 
WellS,)ckets: JSO"': HTMI.; JavaScript: D~ 

Introduction 
A substantial challenge \Vith modeling human cognition is the 
presentation of task environments to the simulated human. 
Software re-implementation provides little scientific reward, 
yet modelers face this burden every time they utilize a new 
or modified task. The situation is further complicated if a 
modeler is studying human-computer interaction (HCI) with 
complex soft\vare in which users are engaging in ongoing, dy­
namic, and interleaved or multi-tasking behaviors. Because 
the focus of cognitive l!lodeling in HCT is often either explain­

ing or predicting performance differences between alternative 
interfaces. substantial research time is spent re-implementing 
multiple. complex interfaces; this effort is further multiplied 
if multiple cognitive architectures arc used. 

Although re-implementation within a modeling architec­
ture fr~tmework can allow maximum control hy the modeler, 
it introduces additional challenges: (a) Re-implementation 
increases the likelihood that the fidelity of the simulation is 
degr~tded by 311 imperfect porting of the user interface or task 
dynamics. lb) IteratiYe changes to the original software/task 
require additional efforts to integrate these changes into the 
l!lodel 's task environl!len1. lc) T~tsk-si rmtlation environl!lents 
for cognitive m·chitccturcs arc sometimes written in program­
ming languages not commonly used for building HCI inter­
faces (e.g., ACT-R uses T jsp; Anderson et ~d., 2004) and of­
ten provide limited facilities for building the task simulations. 

Thus, the process of re-implementation forces a trade-off he­
tween task fidelity and time savings. An alternative to rc­
implementation is to allow a model to communicate directly 
with a user interface th~tt is extemal to the cognitive architec­
ture. Previous rcscm·ch has attempted to solve this challenge. 
although in limited domains. Computer vision (CV) has been 
used to automatically extract relevant visual features !rom an 
existing computer interface (e.g., Halbriiggc, 2013; StAmant. 
Riedl. Ritter, & Reifers, 2005). While CV solutions remove 
the hunlen of '·translating" the interLtce to syr11hols under­
stood by the architecture. they also reduce the control the 
modeler has on how the visual interfaces are specified. Ad­
ditiom.l control requires the modeler to customize the CV al­
gorithms or specify screen clement '1cmplatcs" at the pixel 
level. Other solutions provide the ability for models to act 
witf1in specialized environments, like game'> (e.g., Veksler, 
2009) or robotics (e.g., Kctmcdy, Bugctjskct, Adams, Schultz, 
& Trafton, 2008). These solutions are incredibly useful but 
are limited to their specialized environments. Still other ~olu­
tions proYidc a more general framework for interfacing mod­
els with external softwm·e by using interprocess communi­
calion protocols available in m<my programming hmgu<>ges 
(e.g., Bi.itt:ner, 2010; Hope eta!., 2014). The solution pre­
sented herein falls into this final category. 

""~tlc present a solution to the clullcngc of communica­
tion between external task environments m1d cognitive ar­
chitectures: Simplified Interfacing for Modeling Cognition 
- JavaScript (SIMCog-JS). Our approach Sllpports commu­
nication between Java ACT-R ':.Salvucci, 2013) and HTML­
/JavaScript-based soflw<tre in a user-friendly manner. In the 
remainder of this article, we specify some design require­
ments, describe the functionality provided by SIMCog-JS. 
and provide an example of SIMCog-JS applied to a dynamic. 
multit~tsking experiment environment. 

SIMCog-.JS Design Requirements 

STMC:og-JS is a technology that allows cognitive modelers 
to specify how visual information is extracted from external 
software, passes that information to ACT-R, and passes key­
hmrd ~md mouse events hack to the external softw~tre. The 
primary motivation for SThiCog-JS is rooted in a desire to 
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Figure 1: The browser-based modified Multi-Attribute Task 
Battery (mMATB) as it would appear to a human participant 
(left) and a representation of the ACT~R visicon (right). 

apply cognitive architectures to dynamic, multitasking ex­
periments, such as training simulations or naturalistic web­
browsing. We desire a flexible system allowing interaction 
between multiple cognitive modeling formalisms and exist­
ing software/HCI environments. 

SrMCog-JS attempts to minimize the modeler's burden in 
multiple ways. First, SIMCog-JS requires rrrinimal modi­
fication of existing task code, although it does require that 
the modeler have access to the J avaScript task code. Sec­
ond, SIMCog-JS includes an extension to Java ACT-R that 
replaces Java ACT-R task code and requires no modifications 
for a wide variety of tasks. Thi rd, SJMCog-JS provides a 
user-friendly, flexible syntax for specifying which visual el ­
ements should be passed to AC'l~R , when those elementS 
should be updated in ACT-R, and how they should be per­
ceived (i.e., slot values). 

In order to provide this functionality, SrMCog-JS had three 
critical design requirementS: 

I . SrMCog-JS must use standard software protocols for com­
munication between models and experimental software. 

2. Integrating model interactions with the task makes mi ni mal 
modifications to the experi mental code, minimizing inter­
ference with human data collection or natural behaviors. 

3. Model execution occurs in real time.1 

We note that as our initial target task environment, the 
modified Multi-Attribute Task Battery (mMATB), executes in 
a web-browser and the modeling formalism, Java ACT-R, is 
written in Java, we were required to implement a new solution 
to facilitate interaction between cognitive models and a task 
environment. Hope et al. (2014) introduced a similar solution 
for interfacing Lisp ACT-R with stand-alone software. How­
ever, t.hat published solution does not support either Java or 
JavaScript. Our solu tion took motivation from Hope et al.'s 
work. 

The mMATB Task Environment 
We apply SIMCog-JS to a dynamic, multitasking environ­
ment, mMATB (Cline, Arendt, Geiselman, & Blaha, 2014). 

1 As our target software does 001 support synchronized execution 
with extemal software. 'Ibis is not a consD·aint unique to ow· target 
sotlware, as web browsers (and most softwru-e) do not allow extemal 
synchronization. 

This is a generalized version of the MATB developed to 
assess multitasking in pilot-like environments (Arnegard & 
Comstock, 1991); the modifications in this environment make 
similar cognitive demands on U1e participants, but the tasks 
are less pilot-specific in nature. Our browser-based imple­
mentation is written with the D3 JavaScript library (Bostock, 
Ogievetsky, & Heer, 2011) integrated with a Python django 
database. Participants interact with the environment. through 
keyboard button presses and mouse clicks and movements. 

The nlMATB, shown in the left panel of Figure l, entails 
four separate tasks, which we summarize clockwise from the 
upper left. 'f11e upper left quadrant is a Monito1i ng Task, con­
sisting of a set of sliders and two color indicator blocks. The 
participant's task is to provide the appropriate button press 
(Fl-F6, labeled on each indicator/s lider) if a parameter is out 
of its normal stale. For the sl iders, this means moving above 
or below ± 1 notch from the center. For the indicators, t.he 
normally green (b lack) might turn black (red). 

A Tracking Task is contained in the upper 1i ght quadrant, 
wherein Uuee colored circles move continuously along indi­
vidual ellipsoid trajectories. At any time, one of the circles 
may nlfn red, indicating it is the object to be tracked by the 
participant. The participant tracks the target by mousing t.o 
the target, cl icking on it, and then following it with the mouse, 
until the nex t. target. object is indicated with a color change. 

The lower right quadrant contains a Resource Management 
Task. Two resourc-e tanks are schematically illustrated, to­
geUler with representations of fuel som·c-es, reserve tanks, and 
gated connections (each numbered l -8) between all tanks. 
The participant's task is to maintain the resource levels within 
a range specified by bars on the sides of the tanks. The on/off 
states of U1e gates are controlled wiU1 number pad key presses. 
The participant can control U1e gates with any strategy of 
choice to maintain the resource levels. 

Finally, the lower left quadrant contains a Conununications 
Task. The display shows four channels (Intl, Int2, Ops l, 
Ops2) togeU1er with the current channel values; the topmost 
line gives a target channel and value. If a red cued target 
appears in the top box, U1e participant uses U1e up/down ar­
t'OW keys to select the cued channel and the right/left arrow 
keys to adjust the channel value to the new cued value. The 
enter key submits the corrected channel, which changes the 
topmost cue box to whi te unti l the next channel cue appears. 

Cognitive modeli ng of rnMATB performance aims to cap­
ture behavioral impacts of changes in workload, operator 
stress levels, or fatigue levels and to characte1ize the high­
level strategies engaged during continuous multitasking. 

SIMCog-JS Software Architecture 

SIMCog-JS uses a client-server software architecture. The 
server exists wiU1in Java ACT-R (SalV\Icci, 2013) as a 
"generic task." This generic task is populated with 
environment-specific information as the server receives mes­
sages from a client describing the current state of a task in­
terface. The server dynamically changes U1e ACT-R envi-
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ronment based on the messages received from the client and 
sends messages to the client describing ACf-R's actions. 

T he c lient is built in J avaScript, allowing it to run within all 
modern web browsers. The client runs alongside the browser­
based task translating the task interface for the server and pro­
cessing interactions from ACT-R. The c lient is integrated into 
existing code by referencing the c lient script in I he task's p ri­
mary web page (e.g., index.hmtl). Further, the modeler >-pee­
Hies three things within the client: (a) a list of visual chunks 
to be represented in ACT-R, (b) a list of ACT-R commands 
for the model, and (c) handlers for interactions received (rom 
the task2 Once these are in p lace, the system is ready for use. 

T he client and server communicate via WebSockets and 
JavaScript Object Notation-Remote Procedure Call (JSON­
RPC). WebSockets (Fette & Melnikov, 2011) allow reliable, 
s imultaneous coru1ecti ons between the cl ient and server3 

Once cotmected, the cl ient and server use JSON-RPC (JSON­
RPC Working Group, 2010) to send information . .TSON-RPC 
is a standardized protocol for sending messages based on the 
JSON standard. Both the WebSocket and JSON-RPC proto­
cols are s tandards that have been implemented in many pro­
gramming languages, allowing SIMCog to be easily extended 
to task interfaces and cognitive modeling formalisms in other 
programming languages through the use of these s tandard 
protocols and reuse of the SIMCog-JS's messaging specifi­
cation. WebSockets and JSON are native to JavaScript, but 
requ ires additional libraries for Java. 

Figure 2 shows the flow of information between the 
browser task environment (i.e., c lient), the server, and ACf­
R. Afl:er Java ACf-R and the cl ient are configured and run­
ning, the client sends all information about the interface to 
the server at the s tart of the task, along with any initial ACT-R 
commands. As keyboard and mouse events are generated by 
ACf-R, these actions are passed to the client to a[ect the in­
terface. Deta ils on how to configure the cl ient and server can 
be found with the SIMCog-.TS Sofl.ware Design Document 
included in SIMCog-JS d istribulion.4 The following section 
provides details on how this communication takes place be­
tween the client and ACf-R. 

COJruounicating through SIMCog-JS 

SIMCog-JS allows the modeler to spec ify how inted"ace el ­
ements in software will be represented in ACT-R, to send 
ACf-R commands from the task c lient to Java ACT-R, and 
to determine how the task client will respond to keyprcsses 
and cursor movements made by the model. The following 
sections describe how these th ree facilities are used. 

2 As discussed in Keypress and Mouse Evems seclion below, de­
fault keypress and mouse click handlers are pwvided for the mod­
eler's convenience. 

3·Ibe clieot and server may be run ou separate computers and 
over the internet. However, doing so may introduce additional lag 
that could reduce the fidelity of the simulalion. 

4The SIMCog-JS disbibulion can be downloaded from: 
http://sai.mindmodeling.org/simcogl 
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Fig ure 2: Information fl ow through SIMCog-.TS. T he in­
formation events s tart with the modeler initiating the Java 
AC'T-R model and then launching the browser-based task. 
SIMCog-JS then cmmects the two environments. The vertical 
dimens ion captures time flowing from top to bottom. 

Specifying Visual Chunks 

The left s ide of F igure 1 shows the vi sua I interface for 
mMATB task as presented to the hu man participant in the 
web browser. The right side of Figure 1 shows a visual rep­
resentation of ACT-R's visicon, as specified by the modeler 
and displayed by the SIMCog-JS server. The modeler spec­
ifies which web-browser elements become visual chwlks in 
ACf-R, how those clements will be represented in ACf-R, 
and when those elements will be updated. SIMCog-JS docs 
not send all interface e lements to ACT-R; doing so could un­
necessarily complicate the modeling. The modeler may have 
observational data or theoretical reasons for hypothesizing 
that some interface elements are complete ly ignored by users. 
For example, a uniform background fr ame may have no lin­
pact o n performance, assuming adequate contrast between the 
background and foreground elements. T herefore, the modeler 
must specify the set of interface e lement;; that become visual 
chunks in ACf-R. 

The modeler must specify the interface e lement id and the 
element's shape type. The object's coordinates, width , height, 
color, and text (if applicable) are automatically extracted from 
the task interface using JavaScript DOM function calls and 
jQuery-dependenl. CSS speci fi city eomputat.ions.5 The syntax 
for specifying visual o bjects is:6 

5 All anribut.cs can be specified manually. Sec the Design Doc­
ument at bup:llsai.mindtnodeling.org/simcog/ for more information 
and useful links to the librruies utiliz.e.d. 

6 All syntax descriptions follow tlte same convention. Angle 
brackets are used to indicate a value that must be specified by 
the modeler. Values enclosed in quot.ation ma.r'ks indicate that. the 
value is a string. For example, id: .. < uoique.name> .. indicates tltat 
unique.name should be replaced by a string that is the value of the 
id, like id :" foo". AJtcmativc values arc separat.ed by "I". 
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: id:"<unique name>'', type:"<valid type>" 

The id uniquely identifies the object. If the interface el­
ement has an explicitly labeled id in the document-object 
model (00::\1: e.g., <div id="tup_IJav"> ), that string can be 
used as the STMCog-JS id. Tf an ohject does not have a 
unique ID, the id can be specified with t\vo attributes, name 
and domLuca!iou. The uame value is a string that must be 
unique to the oqject. It is helpful to make the mmc meJJ.1-
ingful. A domLocation value is the node of the object located 
\\'ithin the DOM tree. This node can be found in multiple 
ways. One way is to identify the relation to another named 
object within the DOM tree. Another is to locate the object in 
the DO:M tree relative to the root (i.e., documeut). Synta"'\ for 
these methods are: 

{id: { dumLocatiou: documeul. gelElemeulByidi 
"< e I e me 11 Lid > "). 11 ex tEl eme ut S i bli 11 g 

name:"'<unique_name>"J, ... ( 

{id: { domLocation: document. body. 
lastElementChild. 

name:"<nnique_name>"}, ... f 

The type is a string that determines how the ob­
ject will be represented within ACT-R. A screen ob­
ject rmtst he one of nine I ypes: "Line". "Cross", 
"Label". "'Oval", "OvalOutline", "OvalOutlineFill", "Rectangle", 
"RectaugleOuUiiJe", or" RectaugleOuUi11eFill · The first three 
types ~1.re ''Jutive" to Java ACT-R:7 the remaining items ~we 
custom task components added by the authors. The type 
of an object is represented in the visual chunk's ··lsa·· at­
tribute (e.g.," OvalOutlineFill "has an attribute of "isa oval"'). 
Additionally, if the shape is specified with two colors (e.g., 
"OvalOutlineFill .. has a fill and outline color), then SIMCog­
JS adds a honlerf'olor chunk slot lh~tt cont~tins I he value of the 
border's color and the standard ACT-R color slot contains the 
value of the fill color. The coordinates. dimensions, and col­
ors of objects ~1.re determined differently for different ohject 
types. If an object is declared with the wrong type. it is likely 
that the object will be misrepresented in ACT-R. 

The modeler may ~tlso specify when changes to interface 
clements arc sent to ACT-R. The default is to update when­
ever the element changes using DOM Mutation Observers. 
This event-based functionality is most useful when one or 
more attributes of the interface element changes infrequently. 
The modeler may also specify that updates occur at a config­
urahle. regular interval (e.g .. polling). This polling function­
ality is most useful when the attributes of objects arc rapidly 
changing. In such cases, the polling method can substantially 
decrease the numher of messages to the server, decre~tsing 
computational demands. Specifying J.Xllling-bascd changes 
is done by adding a change attribute with the value ··poll·· to 
the element decl<tralion. Fin<tlly, an object c<tn be dec bred as 
static. Static elements are never updated. The modeler may 
specify an object as static by adding a change attribute with the 

·.rNote that "Bunon"s are not suppo11ed. As discussed later, any 
type of object can be clickable. 

value .. stCJtic ·· to the element declar~ttion. Syntax for change 
declarations is: 

{ .. change:"evt"l"'poll"l"static"} 

In addition lo specifying when updates for <.ill object are 
sent. the modeler may specify which Yisual properties arc up­
dated. By default, all propet1ies are updated. Listing only 
l110se properties lh<tt will change C<m improve soflw<tre per­
formance. For example. a light mav only change color but 
not move, or tracking reticles may only change coordinates 
hut nol colors. The lisl of properties l11~tt will he updated 
arc appended to the value given to the change attribute. If no 
such list is given, all properties are updated. Valid attributes 
are "x". "y". "height". "width", "'color", ··secuudaryColor". and 
"string: Val". Only labels haYc "string Val" attributes. Syntax 
of these expanded change declarations are: 

{. , change:l"'<attribute_name >"', 
"additional_attribute_name > . ... 1} 

{. , chauge:["'poll". "<attribule_uame>", 
"additional_attribute_name > .... ] ( 

It is also possible to add objects to the ACT-R task envi­
ronment that are not relevant to the model but are useful for 
the modeler (i.e .. for debugging the visual interface). This is 
done using "lask-in·elevant" objects. Task-inelevanl oh_jects 
never appear in the model's visicon. For example. a task­
irrelevant object may be used as a background to make ob­
jects e;lsier to see for the modeler. There are four possible 
task-irrelevant objects: Cross, Label, Line. and Rectangle. 
Task-irrelevant objects are not updated throughout the task. 
All objects def~tult to being task-relevant. To declare an ob­
ject as task-ilrelevant, the attribute taskRelevant is added to an 
object declaration with a value of false. The syntax for this 
option is: 

, t:lskRelevant: true I fal~e: 

l<:xample S1•ecificalions from mMATR This section pro­
vides examples of how interface clements in the mMATB 
task, shown in Figure 1, are specified. The examples start 
with simple specifications and progress to the more complex. 

Perhaps the simplest interface elements in mMATB are the 
background color panels underlying all four quadrants. They 
never change (i.e., are stJtic ), are filled with ~1. single color 
("steel blue"\ and arc rectangular. If one hypothesizes that 
these background colors are ignored by the users, these el­
ements can he dechred ~ts task-irrelevant. Alternatively. the 
cognitive model could simply ignore these elements, or the 
modeler could choose to exclude these elements. Making 
them task-irrelevant will improve softw~rre perform~mce ever 
so slightly. Including them in the interface specification will 
make the interface in ACT-R more readable. Although the in­
terface element is simple. it is not uncommon for HTML ids 
to be missing from background clements, which complicates 
the id for these elements. In this example. the domLuca!iou 
value is used to determine the irl hased on the modeler's 
knowledge of the location of these clements in the DOM tree. 
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:type:''Rectcmgle'', 
id:{name:"svgo·· 

domLocation: d3. 
selcct.-\11 (''svg ")[0] [0]. firstChild}, 

change:" stfitic", 
Ln;kRelevaut: fal~eJ 

The Monitoring T~tsk color indicator blocks (upper left 
quadrant) provide a straightfonvard example for displaying 
event-based task elements. The following example is the 
specification of the green color indicator block: the specifi­
cation of the red block is similar. The id of this rectangular 
element is knmvn. mouilor_bu!!ou_O. The only property that 
changes is the color cmd so the only value assigned to the 
change attribute is color. The changes are infrequent, nor­
mally chomging only a few times per second, so the change 
Ctttribute is given the value of "ev1" Note thctt "evt" is the 
default and is not required in the declaration. 

1_ type:" Rectangle", 
i d: .. monitor _button _Q", 

chcmge:[''evt". "color"]) 

Label interface clements arc unique in that they con­
tain text that can be updated. The mMATB Communica­
tions Tctsk's channel vctlues provide exctmples of changing b­
bels. As with the indicator blocks, the ids are known. like 
"comnu:harmeLLfrequeucy" in the example belmv. Hmvever 
the text of the lahel changes. Tn the example he low, the change 
attribute is labeled as C\'Cnt-bascd lC.g., "evt") because the 
values rarely change, and only the text of the label is marked 
for change with .. stringvcil · 

:_type:" L:Jhel". 
id:"comm channel 1 frequency", 
change:[" evt" ,"string Val "j J 

The most dynamic elements in the mMATH interrace are 
the colored circles in the Tracking Task. bch ovctl moves 
continuously along a path using the D3 animation library. The 
constant motion produces a lot of events: this could generate 
a lot of network traffic and decrease software performance. 
Therefore, these elements are specified with the .. poll" value 
for the ch.-mge attribute. The location ("x" <tnd "y") and .. col~1r" 
change, and so all three values are listed in the change at­
tribute. The final attribute of the example specification giYen 
below is clickable; this attribute will be described in the next 
section. 

1 type:'' OvalOutlineFill", 
id :" track_circle_O", 
ch.lnge: ["poll" ,''x" .''y", ·color"]. 
dickAble: true} 

Keypress and l\louse Events 

To complete the interaction loop, actions taken by the model 
•tre transmitted to the task environmen1. There an~ thr~~ types 
of interaction currently supported by SIMCog-JS: key press, 
cursor move, and mouse click. The server sencls all inter­
Ctctions to the client: the modeler hcts full control of how to 
handle (or ignore) cYents. 

The silllplest of the three interactions is key press. Key 
press interactions arc handled automatically by the system. 
This is done by mapping ACT-R key codes to J avaScript key­
codes <tnd dispatching <t keyd~1wn event to the task. CmTently 
only keydown events arc supported; the modeler may modify 
the client code to support keyup and keypress events. 

When a click i-.; performed, a message is sent to the client 
containing the location of the mouse and the event type 
(mouseClick). While mouse coordinates may be enough for 
many tasks. more information is provided, for exalllple, to 
deal with the asynchronous nature of the system or facili­
tate a deeper analysis. An example from the mYIATB task 
is when the model clicks on circles in the tracking t<tsk that 
are moving quickly; the circle could move a couple of pixels 
out from under the cursor before the click event reaches the 
client. To handle such circumstances, objects can be declared 
as clickable. Anytime a click is performed by the model, the 
server determines if the click \Vas performed within any of the 
clickable objects. If it is determined that one or more objects 
were clicked, the message to the client will also include the 
unique IDs of the items clicked, along with the location. type. 
and llJ of every clickable object. This information allows for 
cases where the unique identifier is needed to click an object 
within the task and even more complex cases where specific 
information and computation is desired. 

To declare a visual chunk as clickable. add the dick&ble 
attribute to an object's specification and set it to true. 

{. , clickable:true} 

The client automatically handles clicks by dispatching a 
J avaScript mouse click event. If a clickable object was 
clicked, the client dispatches a click event for that element. 
Otherwise, the client fincls the clement at the location of the 
click and simulates the click there. 

For mouse movements. J avaScript does not allow control 
of the cursor in web browsers. Such control is not allowed by 
code in web brmvsers for security and usability reasons. To 
silllulate a r11odd's mouse movelllents in the task, SIMCog­
JS generates mouse movement messages for the client. This 
approach offers both reliability and speed without introducing 
external software systems. 

Vvben the model moves its simulated mouse, a mouseMove 
message is sent to the client that contains the location of the 
model's simul<tted cursor. With this information, the mod­
eler can record the simulated mouse movements similarly to 
hmv human mouse movement data are recorded. To do so. 
the lllml~ler will likely need to mmlil'y the client cml~. For 
example, in mMATB the cursor-recording code looks like: 

ws.onmessage =function (evt) { 
II Called when server message received 
var serverMessage = JSON.parse(evt.data): 

el~e if(~erver\fessage.Commcmd == "mouseMove"): 
track chcnt.mousef.ocation( 

{ x: modell n tera c ti on . mons eX, 
y: modellnteraction .mouseY-~); ,, . 

" 
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Sendin~ ACT-R Commands 

SIMCog-JS supports sending model commands from the task 
t<l ll1e Ill<Jdel. D<ling so is straight forwanl and I akes advantage 
of existing Java ACT-R methods for executing ACT-R com­
mands. The modeler adds commands to a list in the client 
code th'-1-t is sent lo the server '-1-t I he start of eXt:culion . .For ex­
ample. to represent the Resource Management Task instruc­
tions to maintain the resource level \Yithin a target range. the 
modeler may specil"y: 

["(add-din (resourceTask is a goal 
minLevel 2000 maxLevel 3000))"", 

"(goal-focus resourceTask )""] 

Conclusion and Future Work 

SIMCog-JS is a system that allows cognitive models to 
interact with extemal software, minimizing the bsk re­
implementation burden on the modeler. The system cuiTently 
facilitates communication between Java ACT-Rand HTM­
f.J.lavaScript. Tn addition to descrihing the architecture of 
SIMCog-.TS, this paper reported on using SIMCog-.15 to (a) 

specify visual interface elements for use by ACT-Rand how 
those interLtce specifications c~m he customized, lh) integrate 
ACT-R responses into .lavaScript software, and (c) execute 
ACT-R commancls from the task interface. The strengths 
of SIMCog-JS are the easy specification of visual objects 
and interactions \Vith minimal task-code modifications and 
the seamless interaction between models and browser-based 
tasks. The rm)(leler need only specify the identity and shape 
for visual objects to reach ACT-R. 

Development is ongoing to improve and extend the func­
tionality of SIYICog-JS. A mid-term goal is to add syn­
chronous execution modes. where the task and model use 
the same simulation clock. relaxing de'>ign requirement 3 
without negatively impacting real-time execution. Additional 
planned features include audio event specification and sup­
port for rmtlliple cognitive modeling formalisms. like EPTC 
architecture (Kieras & Meyer, 1997) and Python-based math­
ematical models. 

By hmncssing standm·d programming protocols and lan­
guages, the SIMCog approach can lighten the modeler's bur­
den while hroadening I he environments in which computa­
tional cognitive models operate. Because SIMCog-.TS can 
operate in an environment with facilities for complex data vi­
~u~tlinlion (e.g .. D3), we will he pushed lo enhance AC'T­
R's functionality. In the future SIMCog-JS could be inte­
grated with an a11ificial vision system to. for example, au­
tmm.tically determine object shape: this combined approach 
could in fact, bolster both candidate solutions to the task re­
implementation challenge. 
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Abstract 

We utiUzc the capacity coefficient to characterize the work­
load capacity of visual multitasking. The capacity coefficient 
compares cognitive work completed against a baseline parallel 
model predktion. Capacity coefficient results subsume stan­
dard mean response lime (RT) dual-task findings wbile provid­
ing a description of workload effects on the whole RT d i~Lribu­
tion. This yields a theoretically-grounded characterization that 
can inform computational and process models of multitasking. 

Keywords: Workload Capacity; Multitasking; Mulli -Auributc 
Task Rattc•·y; llumanlnfol'lnation Processing ; Ouai-Task 

Introduction 

We seek 10 provide a better malltematical characrerit.arion of 
cognitive performance during multitasking, rbe simultaneous 
execution of more than one decision within the same cxpcri­
menUtl environment. Often, characteri:tations of multiUtsking 
perfomtance are limited to assessmellls of dual rask decre­
ment~. wherein mean response time (RT) or accuracy are 
compared across only two tasks. An increase (decrease) in 
mean RT (accuracy) when swirching from a single task 10 the 
dual-task environment is inrerpre ted as an increase in cogni­
tive workload. This may he further correlated wi th subjective 
workload rntings. While these measures do give some indi­
cation of pa•ticipants' experiences of workload, tltey do not. 
prov ide s r.rong insight inro the cogn itive mechanisms support­
ing the multitasking behaviors or the mechanistic reasons for 
changes in performance under changing workload demands. 

We report on an cffo•t to utili7..c human infom1ation pro­
cessing modeling to provide qualitative and quantitative char­
acteri:tation of the cognitive mechanisms engaged in multi­
lasking. In parlicular, we focus on changes in workload ca­
pacity, 1l1e effic iency with which the system responds to llte 
changing number of rasks in a dynamic environment. 

Modified Multi-Attribute Task Battery 
To study multitasking, we utilize a web-browser iolplcmcnta­
tion of the modified Multi-Attribute Task Bauery (mMATB; 
Cli ne, Arend!., Geiselman, & Blaha, 2014), developed in rhe 
.lavaScript D3 library (BosLOCk, OgieveL~ky, & Heer, 2011) . 
The mMATB consists of four possible visual decision mak­
ing tasks: Tracking, Monitoring, Communication, Resource 
Management. In our implementation. a ll aspects of the work­
load can he manipu lated: enrirc Utsks (quadranrs) can be 
n•med on or off, the rare of alerting evenrs can he varied as 
can the probability of simultaneous alerting events, and the 

figure 1: Diagmm of the modified Multi-Attribute Task Bat­
tery (mMATB) used in the present s tudy. The four visual 
rasks are (clockwise from upper left): Monitoring, 'lhtcking, 
Resource Management, Communications. 

speeds at which the moving pans of tbe displays move can be 
adjusted. We will focus herein on manipulations of the toral 
number of tasks to be performed simultaneously. 

rigure I shows the mMATB environment. The Tracking 
Task, contained in tbe upper right, entails physically !racking 
rluee colored circles move conrinuously along individual el­
lipsoid trajccrorics. High perfonnance on this rask requires 
continual motion and attention to switching targets. 

Both the Monitoring Task (upper left) and the Communi­
cations Tasks (lower left) require keypress responses to alert 
events. In tltc Monitoring 'task. the participant's task is to 
provide t11e approprialc response if a pammcter is out of its 
normal slate. In the Communications Task, pruticipants must 
adjust a cham1elto a new value upon target cuing. 

The lower right quadrnnt contains a Resource Management 
Task which requires only strategic aucnrjon to gates in order 
to mainUtin fuel levels within a predetermined range for two 
schematic resource ranks . 

·n1e mMATB. rhus, demands a division of visual attention 
across the four tasks. During multitasking. partic ipants are 
instructed to emphasize accuracy in tbe Tracking Task as rheir 
primary Utsk, and to respond 10 al l o1l1cr alerts appropriately. 
Response times are collected to cued events; response choices 
are collecred for aU inreractions. 
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The Capacity Coefficient 
Workload capacity is defined as the ability of the cogn itive 
information processing mechanisms to respond to changes in 
cognitive load. This is usually interpreted as changes in the 
number of items tl1at need to be processed within a task. Ca­
pacity is assessed with Rr data, in order to make inferences 
about information processing speeds. Qualitatively, the pos­
s ible capacity classes are unlimited, super, and limited ca­
pacity, corresponding to processing speeds remaining steady, 
increasing, or decreasing, respectively. 

Our primary measure of workload capacity is the capac­
ity coefficient (Houpt, Blaha, Mcintire, Havig, & Townsend, 
2014). This is a ralio measure which compares the observed 
participant's RTs during multit asking to a model-based pre­
diction about multitasking speed. The baseline RT model is 
an unlimited capacity independent parallel model (UCIP). We 
util ize the capacity coefficient fo,· 6'T-ST responses (Blaha, 
2010): 

C(r) = K,(t) . 
K,,c(t) 

( l ) 

In Equation 1, the numerator gives the cumulative reversed 
hazard function for individual target channel k when pro­
cessed alone; lhis is the UCIP model prediction. The denom­
inator is the cumul ative reversed hazard function for target 
channel k when additional tasks (the set (.') are being per­
formed. 

Figure 2 illustrates C(1) results for one typical paJt ici ­
pant in both dual-task multitasking (upper plot) and four­
task multitasking (lower plot). Relative to the UCIP base­
line at C(t) = l, the data indicate that while while all condi­
tions showed mean R1' dual-task decrements, the functional 
data are more nuanced. Under dual-task conditions, perfor­
mance in the tracking task improved, showing super capac­
ity C(1) > 1 for most ti mes. but falling to limited capacity 
C(t) < l when the number of tasks increased to four. Thus, 
additional task demands have the potential to improve track­
ing performance. 

Detection pe.rformance in the monitori ng task, on the othu 
hand, was li mited capacity in both the dual task and four­
task multitasking conditions. Communication task detection 
was also limited capacity in I he four-task condition. This in­
dicates that division of attention across multiple tasks slows 
alett detection responses. 

Discussion 
The present work is the first to apply the capacity coefficient 
to a multitasking situation, where the number of tasks is ma­
nipulated wh ile the [ealures within each task (when present) 
remain unchanged. Current results indicate that some tasks 
benefit from additional workload demands, while others are 
slowed. The capacity coefficient can capture botl1 types of ef­
fects. This more nuanced characterization can then be used 
to inform computati onal and process models, such as the 
threaded cognition model of multitasking (Salvucci & Taat­
gen, 2008), and to study task switching and divided attention 

Time (sec) 

Figure 2: Capacity coctlicient results for a typical participant 
in the dual task (upper) and multitask (lower) conditions. 

strategies. 
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Abstract 

Adaptive Control of Thought-Rational (AC'T -R) and the 
Linear Ballistic Accumulator fLBA) tvere compared in a 
model mimicry simulation of the Psychomotor Vigilance 
Task ( .PVT). a simple, reactwn time (l\T) task requuing 
~n<>t&incd attcnticm_ The nwdcls usc different t0Jmf11i:>ms to 
capture th<:! full response profile of the PVT The: parameters 
wert:: vruied sy~tematically to illustrate the nmges l'f the 
models· predictions, to assess the models' estimation 
properties, and to det.::1mine which parameters in the models 
correspond with each other I3oth models produced skewed 
RT distributions typical l'f empirical d<Jla, including false 
struts rutd lapses_ The: simulation sh1dy demon:;.trated that both 
modeb and U1en panuneters are recoverable. Laslly, ISoi<Jled 
parameters in the LBA model cnphrred the effects of\'8.1)-ing 
parrutteters in the ACT-R modeL but the reverse was not 
alwnys tme The~e intereo,ting wrre~p0ndence~ rtcro~s 

ditTerent modeling formalisms suggest the possib1lity of 
integmting ACT-R nnd the LBA in fnhJJe work 

Keywords: AC'T-R, LBA, PVT. rcacti0n time, fatigue, model 
compar1son 

Introduction 
The ability to detect a single stimulus is fundamental to 
cognition. Although this skill is basic. the study and 
modeling of stimulus detechon 1s \Vorthwh1le for several 
re<:~sous. Slrrnulu~ dekction has been exlenslVely exmrnned 
in h1homtot)' tt~:c;b mvolving v1gilmtce t~nd simple ret~chon 
time (RT; Luce, 10RO)_ Additionally, this ability undeJlies 
successful JXrfmmance in applied contexts that Jequirc 
sustained attention. such as driving. Finally, intuition 
suggests that the cogniti\'e pwcesses involved in stimulus 
detection should be involved in more-complex multi­
allenmlive choices as well 

Despite the simphc1ty of detection ta~ks, the RT 
distrihutiom they produce are complex and empirict~lly rich 
This is well-illustratcd by thc psychomotor vigilance task 
(PVT; Dinges & Powell, 1985), a 1 0-minute detection task 
in which stimuli me presented at random inteJ-trial intetvals 
ranging from 2 to I 0 seconds. Participants are instmcted to 
respond as quickly as possible once the stunulus appears 
while <:~voiding premature respon:oes. The PVT re~pouse 
profile consists of three categories: false starts occ1rr he fore 

or withm 150 ms of stlmulus presentat10n, alert responses 
occur between 1 50 flnd :)()() ms of the stimulus onset, t~nd 
lapses occur 500 ms after of the stimulus onset_ The RT 
distribution on the PVT, which has a long right tail even 
when participant<> are well Jested, becomes increasingly 
skewed to the right with greater fatigue from sleep loss. as 
reflected in increased lapses (Lim & Dinges, 20Ut<!l. 
Addilmrwlly. participanL~ commit more l'abe starts. The~e 
features of the response profile reflect stahle mdividml 
difference-s, both at baseline and following sleep loss (Van 
Dongen, Baynard, Maislin, & Dinges, 2004) 

A complete model of the PVT should explain thc full 
response profile, yet most biomathematical accounts fJom 
the sleep JeseaJch literature only predict aggregate measures 
of perfonnance such as the propmtion of lapses (for a 
ri:''>Iew, ~ee Vmr Dongen, 200!J) . .J.-tore recent work lm~ 
attempted to use stah~tical functions to characterize the full 
RT distribution (Lim & Dinges, 200Rl, hut those effom ~till 
fail to explain why the particular distributions arise A 
pmmising altemative is to use computational cognitive 
models. which specify the cogniti\'e pmcesses nnderlying 
task perfonnance. to simulate behavior in the PVT (e.g .. 
Gw1zelmann. Veksler, Walsh, & Gluck, 2015). 

In lln~ paper. we compared two PVT models derived lium 
vety ditl"erent fl1m1alisms_ The first model is ht~sed on the 
integrated-cognitive architecture Adaptive Control of 
Though-Rational (ACT-RJ, in whichRTs are detetmined by 
the dmations of a sequence of discrete cognitive e\·ents. The 
second model is based on the Linear I3allistic Accmnulator 
(LBA. Brown & Heathcote. 2008). an analytically h·actable 
ml:'mber of the d<e>~ of sequential smnpling models. ln lhe 
LBA, RTs are detennined by the combmed durations of a 
decision process m which evi(hmce accumulate~ 

continuously, and an overall non-de-cision timc attributed to 
perceptual and motor processes 

The PVT is an ideal test bed for comparing ACT-Rand 
the LI3A because (1 J the PVT is simple, yet (2"1 it provides 
empirically rich data for inferring cognitive processes, and 
(3) both ACT-R and the LBA can be apphed to the PVT. 
R<:~lher thm1 attempting lo fahrl)' one account. we ~ought lo 
cmnpt~re and contrast the~e diffenng fonnt~hsms 
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We addressed three primary questions in this research. 
first, can both ACT-R and LI3A generat e the complete RT 
profi les, including false starts and lapses, observed in I'VT 
studies? ACT-R models have predominantly been used to 
predict mean RTs. and attempts to account for full RT 
distributions have been rare (but see Walsh et aL, 2014). 
The l .HA has only been used to model the correct and error 
responses in multi-alternative choice tasks (Rrown & 
Heathcote, 2008), and it was unclear whether it could also 
account for the full response prolile observed in the l'VT, 
especially the occun·ence of false starts and lapses. Second, 
how well can ACT-R and LI3A recover their own 
parameters from simulated l'VT datary Both models are 
complex, and the estimation prupetties of their parameters 
have not been assessed in the PVT. As such, it was 
unknown whether model parameters could be reliably 
estimated !rom PVT data, or whether the models could even 
be distinguished from one another based on data from the 
PVT. Third, what are the relationships between core 
parameters in the two models? A lthough the models are 
distinct, it was unclear which of their parameters are 
conceptually and/or function ally linked. 

Models 

LBA 
The LI3A is a sequential sampling model that is similar to 
the drift diffnsion model (DDM) in terms of parameter 
interpretation (Brown & Heathcote, 2008; Oonkin et aL, 
2011). In both models, information is sampled from a 
stimulus and accumubtes over time. When accumulated 
evidence in favor of an alternative reaches a threshold, a 
decision occurs. Sources of variation in the DDM, such as 
intra-trial variability in evidence accumulation and inter­
trial variability in non-decision time. are ahsent from the 
l.RA. These simplifications come with no loss of generality, 
making LBA a more parsimonious, complete account of 
bas ic empirical RT phenomena (Brown & Heathcote, 2008). 

In the standard l.RA, the stimulus onset triggers an 
evidence accumulation process. Accumulated evidence 
begins li·om a variable starting point between 0 and the 
response threshold, and proceeds towards the response 
threshold in a linear and deterministic fashion. The speed of 
the accumulation process is controlled by the drift rate. 
I3etween-trial variability in the drift rate and starting point 
or the evidence accumulation process contribute to the 
shape and spread of the RT distribution. The drift rate is 
normally distributed across trials with a mean of V, and a 
st andard deviation of 1. The starting point is uniformly 
distributed with an adjustable maximum statting point, A . 
Other processes su ch as encoding and motor execution are 
combined into a composite measure of non-decision time. t0. 

Several moditications were necessary to apply the LI3A to 
the I'VT (Fig. 1). Our modified LBA model involves two 
accumulation processes that occur in succession rather than 
one accumulation process. First, an inter-stimulus interval 
(lSI) accumulation process statts at the beginning of the 

Inter-Stimulus Interval Stimulus Interval 

Figure l. The modilied LBA has separate accumulators lor 
the inter-stimulus and stimulus intervals. A denotes spread 
of start points for stimulus interval, and b denotes threshold 
for both intervals. The vertical bar marks stim ulus onset. 

trial. Although this process has a negative drift rate on 
average, stuchasticity occasionally results in a positive dri ft 
rate and, consequently, a fals.: start. Once the stimulus 
appears, the lSI accumulation process halts and a separate 
stimulus interval (ST) accumulation process starts . The trial 
ends once a response is given. 

The lSI and Sl accumulation processes are identica l, 
except for mean drift rate, V, and the maximum starting 
point, A. The 1ST mean drift rate, V1s1, is constrained to be 
negative, indicating that false starts are rare and produced 
randomly. Additionally, the lSI maximum starting point, 
A tst .• is set to zero to reflect hias toward not responding. The 
threshold, b. is the same for the lSl and SI accumulation 
processes, as is non-decision time, 10• In total, the modified 
l.HA model contains live free parameters: h, As1, V1s1, Vs1, 

an d ln. 

ACT-R 
AC'l'-R contains a set of special ized information-process ing 
modules (e.g., a vis ion module, a declarative memory 
module, a motor module). These modules are connected to, 
and controlled by, a central procedural module (Anderson, 
2007). Procedural knowledge is represented in the fo rm o f 
production rules, which consist of se lection criteria and 
actions that modify the internal state of the architecture and 
the external state of the world when the selection criteria are 
mt:t. The temporal dynamics of cognition unfold across a 
sequence of production cycles. During each cycle, the 
conditions for each production are compared against the 
conditions of the current state, and a production is selected 
and enacted if its conditions are met. The resulting state 
serves as the starting point for the next production cycle. 

We adopted an ACT-R model of the PVT that consists o f 
three productions: (l) wait for the stimulus to appear, which 
represents task engagement, (2) attend to the stimulus, and 
(3) respond to the stimulus (Walsh et al., 2014). Partial 
production matching allows productions whose conditions 
are not pedectly met to be selected in a stochastic fashion, 
producing occasional false statts. The probability that a 
production is selected is modulated by two adjustable 
parameters- a utility scalar (Us) and a utility threshold ( Ur). 
Formally, production utility can be expressed as: 
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en 

where U,; is the utility of production i in state j, [J:; is the 
utility scalar_ [1, is the stored utility for production i, AIMP y 

is the mismatch penalty for production i in state j, and c, is 
logmlically di~lrilmted noi~e. The re~ulting payoff matrix i~ 

~ymmetric with 0 <l~~igned to mi~mtltche~ and 1 3~~1gned to 
mt~tchc:o:_ The mi~match pemlty emures that productions 
whose- conditions arc not perfectly met will be selected with 
low probability. 

The production with highest utility is selected and enacted 
if its utility exceeds the utility threshold, UT, 

If no production's utility exceeds the utility threshold, a 
microlapse occurs and no production is ermcted. Following a 
micwlap~e, the utility ~cabr in Et1. l i~ decreml:'nted by em 
adju~ll:lble scalar, FPae,·· according to Uc - Uc-FPdec· Thi~ 

increa~es the hkelihocxi of microlap~es m subsequent 
production cycles_ Across such a series of cycles, the 
probability of responding decreases progressi\cely, causing 
behavioral lapses. The final adjustable parameter, r-yr-·le 
ftme. controls the duration of conflict resolution at the start 
of each production cycle. In total, the ACT -R model 
conlam~ four free panuneters: U,, Uy, f<Pdec, and '-')''-"ie lime. 

Our model hcm1essed two sources of temporal vanabihty. 
The first rebted to the vt~riahle sequence of productions 
selected in a trial, and the second relate-d to the stochastic 
duration of production and cycle times. Each trial's RT, 
then. was determined by the summed durations of the 
productions and their associated cogniti\ce and motor 
proce~~es. ln Uri~ w<:~y, the ACT-R rnodd can produce a full 
distnbution of RTs, rather than an approximatwn of an 
aggregclte mean RT (Walsh, et t~l, 201-t) 

Simulation Method 
Vie simulated an idealized selective int1uence experiment 
(Donkin, et aL 2011) in \vhich the parameters of each 
model were systematically varied one at a time while all 
other~ were ~et to del~ult values. Thm approach allowed u~ 
to exam me (1) our abihty to accurately recover parameters 
of each model, (2) the extent to which the models mimicked 
each other and (3) how the paramete-rs \Vere correlated 
between models. Parameter ranges were drmvn from the 
published model fits of PVT performance by 13 well-rested 
indi,-iduals in the control condition of a sleep deprivation 
experiment (Doran, Van Dong en, & Dinges, 2UUl, see also 
Walsh d aL, ~OH). We ~el Uri:' default value or each 
pclmmeter to the medim1 e~timate from the mrlivirlual model 
fit~. t~ml the: range of each parameter to the complete range 
of e-stimate-s from the individual fits (Table 1 )_ V.-'c- varied 
parameters at ten equally spaced intervals mcer their ranges, 
resulting in 40 ACT -R parameter sets ( 10 levels per 
parameter by 4 parameters I and 50 LBA parameter sets (l 0 
level~ per panuneler by 5 parmnder~). We ~imul<:~led 50,UUO 

PVT trials for each model and parameter set to minimize the 
role of sampling error and bias in our analyses. 

Table 1. Default parameters and ranges in the simulation. 

LBA b A.w I :.,I ,, Vni 

Default 0.68 0.44 3.42 0.15 -2.34 

r-.-1in 0.51 0.1 3 0.15 -2.95 

Max 0.9:::: 0.56 3.9 0.1~ -2.01 

ACT-R lls u, FP"' 
Cycle 

l's- Ur 
Time 

Default 4 85 4_39 0 98 0_04 OA6 
Min 4 01 4_07 0 91 0_029 -0_38 

MclX '6 )_02 0 99 0_0')7 1.21 

Each model wa~ fit to the 90 simulated datasets using 
quantile mt~ximum likelihood e~timt~tion (Het~thcote, Brown 
& Me\vhort. 2002)_ RTs that occmTed prior to stimulus 
onset or within 150 ms of stimulus onset Vi'ere combined 
into a false start bin (Linl & Dinges. 2008 ). The remaining 
pmtion of the distribution was further divided into 2(1 
quantile bin~. Likdihood e~limates werl:' calculated from Ure 
olmerved and expected proportion~ of RT~ wrthin each 
quantile bin_ A simplex algorithm embedded within a grid 
search \Vas used to find the model parameters that 
maximized the likelihood of each simulated dataset Large­
scale computing resources (HarTis, 2008) \Vere leveraged for 
ACT-R, as it is computationally intensive. 

Results 

:Model RT Distributions 
Figure 2 show:c; four of the mo~t (lgtinctnre RT ch~tributiom 
produced by ACT-Rand the LBA_ The distributions, which 
vary in te1ms of numbers of false starts and lapses as \veil as 
median RTs (Table 2), are within the ranges of those 
produced by well-rested and sleep deprived individuals (cL 
Walsh et aL 20141. In the 90 simulated dat.:<sets, the models 
produced ~imilar proportion~ or rabe ~ll:lrt.s and lapses and 
sinular median R Ts. However, the LBA model cons1stently 
yielded di~trihutiom with more pronounced skew 

Table 2_ Proportions of false starts and lapses, and medim1 
R Ts from the simulated distributions in Fig ") ~ 

Model CUI'Ve False Lapses Median 
Starts RT(ms) 

ACT-R Blue 006 .000 245 
Red 008 .005 272 
mack 010 .083 305 
Green 101 ::.::-: '81 

LI3A I3lue 006 000 242 
Red OOR 010 271 
Black (!11 085 306 
Green 106 .210 381 
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ACI'-R 

LBA 

x:: 11~ 
.00 

150 200 250 300 350 400 450 500 
Response Time (ms) 

Figure 2. Proportion of RTs in 10 ms bins ranging from ISO 
ms to 500 ms. The first bin contain.~ all RTs before 150 ms 
and the last bin contains all RTs after 500 ms. Blue, red, ' 
black, and green li nes show fast, mediwn, slow and sleep 
deprived RT distributions. 

Parameter Recovery 
The parameter recovety model fits address how accmately 
the parameters can be estimated from PVT data. In these 
analyses, the models were fit to their self-generated data. 
Two metrics were used to assess the quality of the 
parameter recovery: correlation to measure the linear 
association between the true and recovered parameters, and 
relative bias to measure the precision of the estimates. 

Table 3 (upper) shows the parameter recovery results for 
ACT -R. The high correlation for cycle time indicates that 
titis parameter is recoverable. Correlations for U, and Ur 
were moderate, but the correlation for the difference 
between U, and Ur was high. This indicates that the uti lity 
scalar and threshold jointly influence performance dynamics 
in ll1e ACT-R model. The low correlation for FPd« is due to 
the relatively infrequent occurrence of lapses in well-rested 
individuals. Relative bias was low across all parameters, 
indicating the high precision of the estimates. 

Table 3 (lower) displays the parameter recovery results 
for the LBA. The high cotrelations artd low relative bias 
indicate that the parameter recovery was successful. 
Collectively, these results show that parameters from botil 
models can be rel iabi lity estimated fi·om their own 
simulations ofPVT data. 

T bl 3 P a e arameter recovery rc.~ult.~ for ACT-Rand LBA. 
ACT-R u. Ur FPJ~ Cycle u.-

Time Ur 
Correlation 0.85 0.77 0.56 0.99 0.99 
Relative Bias 1% 1% 0% 0% 4% 
LBA b As, Vs, to Vm 
Correlation 0 93 0 97 085 085 0 98 
Relative Bias -3% 2% -1% 3% 0% 

Mode l Mimicry 
The model mimicry analyses address whether ACT-R and 
the LBA produce different predictions on d1e PVT. In tilese 
simulations, the ACT -R and LBA models were cross-fit to 
data generated by each other. The Bayesian Infonnation 
Criterion (BIC) was used to determine whed1er ll1e data­
generating model provided a better fit to the RT 
distributions than the altemate model while adjusting for 
parametric sources of model complexity. Smaller values 
denote bcU.er fit 

Figure 3 shows the BICs averaged across datasets for 
each model. In a ll 90 simulated data sets, bolll models 
provided better fits to their own data tl1an tile altemate 
model. This shows that although the models make very 
similar predictions tlley are identifiable in simulations with 
very large san1ple s izes. 

Data- Generating Model 

Figure 3. BIC averaged across datascts. Stars denote lit of 
data-generating model to itself. 

Parameter Correspondence 
We examined the matmer in which pru·runeters in the two 
models corresponded to one another. In our simulations, 
par'dllleters were varied one at a time while the oUter 
parameters were ftxed. In the simplest case, a change in one 
parameter would be captured by variation in a sing le, 
analogous par'dllleter in tlle alternate model. For simplicity, 
we considered tlu·ee core parameters in the ACT-R model 
(Us - Ur, FPau, and cycle time ), and four in the LBA (V SJ, 

V TSL to, and b - As/.?). The composite parameter b - As/.?, 
cal led reSJJOnse caution, is derived from the threshold and 
the center of tile strut point distribution, atld measm-es the 
average amount of infom1ation that is needed to reach the 
decision ilireshold (Donkin, et al., 2009). 

We fu·st exatnined how ACT-R responded to 
manipulations of the LBA parameters (Table 4). No 

Table 4. Correlations between LBA (data generating) and 
AC f -R (best fitting) patameter values. *p <.05 

ACT-R 
LBA FP • ._ Cvcle Time Us - Ur 
VISJ -0.06 0.08 0.04 
Vsr 0.1 0 -0.09 0.16 
to 004 020 0.22 

Response -063" 0.9 1* 0.68* 
Caution 
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Table 5_ Correlations bet\veen ACT -R (data generating) and 
LI3A (best fitting '1 parameter values. *p <.05 

LBA 
ACT-R Vrsr v.7r lc Response 

Caution 
FPdcc (1.22 0.16 0.08 0.31) 
Cycle Time -0 1 g -0_01 -0 OR O_S9* 

Us- U1 ()_Q7 0_96* -0_41 * 0_08 

pannnden; m U1e ACT -R model were ~electively influem:ed 
hy chtmges to VsJ.,Fr51 nnd t(,, hut nll pammeter~ were 
affected by changes to response caution_ ::\ext, we examined 
how the LBA responded to manipulations of ACT -R 
parameters (Table 5) Changes to c.vcle time were captured 
by response caution. and changes to U.;- U7 were captured 
by V~I· No parameter in the LI3A was selectively influenced 
by changes to FPdec· In sum, there \Vas a direct mapping 
between individual ACT-k pcmnnder m<:lmpulatioilli aud 
LBA parameter~, but not between inchvidual LBA 
pnmmeter mtmipult~tions t~ml AC:T -R parameters 

Discussion 
The detection of a single stimulus is among the most-widely 
studied topics in cognitive science Yet, despite the 
simplicity of one-choice RT tasks, the RT distributions they 
produce are complex and difficult to account for in detaiL 
Here, we compared two computational cognitive models of 
the PVT On<:' mudd was based on ACT-k and consists of a 
~elJUence or discrele cognil1ve event;; wlnle the other was 
hn~ed on the LRA, which involves contimiou:> evidence 
accumulation The results of our simulations support three 
findings. First, both models produced the qualitative shapes 
of R T distributions found in the PVT, including the long 
right tail of RT distribution, and occasiomd false starts and 
lapses (Fig. 2). Second, most model parameters \Vere 
recov<:'rabl<:' and th<:' PVT wCJs capable of dislinguishmg 
between the models. Th1rd, isolated parameters m the LBA 
model captmed the effects of varying ACT-R panm1eters, 
but the reverse was not always tmc_ The corre-spondence­
between ACT-R parameters and LEA parameters suggests 
similarity between these differing modeling fonnalisms. 

l\.1odel Comparison 
Th.o correspondenc.o between pt~rameter~ in the 1 Bi\ and 
ACT -R models was complex In some cases, parameters in 
one moclel were affected by parametric variations in the 
other in intuitive ways_ For example, drift rate (V,·;'I in the 
LEA captured changes in the difference between the utility 
scalar and threshold (U,c;- U';') in ACT-R. This makes sense 
because botl1 fundamentally control the signal-to-noise ratio 
in U1<:' decision proc<:'~s. 

In other ca~es, unexpected model parameters 
corresponded to one t~nother. For example, changes in 
response caution in the LEA \Vc-re captured by '"oycle time in 
ACT-Rand vice versa. Response caution is thought to be 

sensitive to instmctions designed to prioritize speed or 
accuracy, whereas ~.-:nde time is conceptualized as a stable 
property of U1<:' cogmtiv<:' archit<:'ctur<:' tlml only van<:'s among 
individual:; /\CT-R po:;it:; th,lt production :;election 1~ 

im;tantit~tcd in the ha.'*ll ganglia, V<'hich roxcive:o: input from 
multiple excitatory and inhibitory pathways It 1s 
concei\'able that the duration of production selection. 
represented by cycle t1me, varies with dynamic activity from 
these pathways. In other words, the relationship between 
response caution CJnd c:vcle lime nwy b<:' ree~l, d<:'~p1te U1<:' 
cunent standard of flxing cycle time within ACT -R models 
of individuals 

In a third set of case-s, we found little corresponde-nce 
between model parameters. For example, ACT -R failed to 
capture manipulations of non-decision time in the LI3A. 
This relationship \Vas relatively symmetrical in tlmt non­
declsion time showed httle or no systematic relahonship to 
lh<:' manipulation of CJny ACT-R. p<:lmmeler~. Such a lCJck of 
conespundence suggests Umt an exp<:'rimentCJl mampulation 
of non-dec1~1on time could potentially ch~criminate between 
ACT-Rand the LRA_ l'vforcover, thi~ finding indicates tht~t 
conclusions will depend critically upon which model is used 
to evaluate data. 

Effects of Fatigue on Psychomotor Vigilance 
We demon~trated that the ACT -R and LBA models produce 
3 range of respome profiles thtlt nre simibr to each other, 
and similar to those- observed in well-rested individuals_ The 
models rarely responded before 150 ms of stimulus 
presentation (false starts). and they rarely responded more 
than 5()0 ms after the stimulus appeared dapses ). False starts 
and lapses, though present in baseline kT d1stributions, are 
greatly exacerbated by fatigue from sleep loss. As shown by 
\Val~h et a1 (201-4), /\CT-R ct~n be integrated with a 
biomt~thematical model of fatigue to predict the effects of 
time awake and time of day on PVT perfOimancc-_ The LEA 
model has not been expanded to account for the effects of 
fatigue on PVT perfonnance, yet it should be conceptually 
straightfonvard to do so 

Eve~luating U1<:' models lmder condilions of fatigu<:' nnghl 
also enhanc.o model discri.minalnlity. 1\-Iore confidence can 
be placed m a nwdel that capture~ nornwl "~ well ct~ 
impt~ired cognitive functioning_ Certain pclrmneters that t~re 
essential to captming the- effects of fatigue minimally affe-ct 
alert perfonnance on the PVT (FF'dec and [.TT in ACT-R, and 
Vr:;r in the LI3A). In this sense, sleep deprivation protocols 
provide a unique opp01tunity to distinguish among models 
of the PVT (Walsh et al., 20141 and could be leveraged as a 
gen<:'ml slmtegy for model compe~n~mL 

Towards an Integration of ACT-Rand the LBA 
Sequential sampling models and ACT -R explain cognition 
using different modeling fmmalisms. Sequential sampling 
models provide detailed accounts of empirical RT 
d1stributiom. Tin~ <:'mphasls comes at U1<:' cost of limited 
gen<:'nllizability beyond W<:'ll-constramed deci~ion-mclkiiJg 

tasks utilizing fixed trit~l ~tmctures_ C'ognitive architectur.o~, 
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by contrast, focus on the unification and generalization 
necessary to model complex tasks. Because of tills focus, 
cogrntive <:~rchileclure~ neglect cerlam delmb of luw-le-vel 
decision proce::::es 

Effort>~ to capitalize on the complimentary strengths of 
sequential sampling models and cognitive architectures have 
been made recently. Van l'v1aanen, van RlJn. and Taatgen 
(201 ~-~ combined the DDM and ACT -R to fotm RACE/A, 
which accounts for the dynamics of declarative memory in a 
piclure-word inkrf<:'rence la~k A DDM_ with mu!Ltple 
accumulator~ govems how the actlvatwn values of 
infonnfltion in declamtive memory chtmge over time and 
detc1mine retrieval latencies_ ACT-Kin htm, provides the 
control structure necessary for coordinating the multitude of 
decision and non-decision processes evoked by the task 

\Vithin the context of the PVT, sequential sampling 
models could be used as a mechamsm for productwn 
~el<:'ctiou. Pre~enUy, the dumtiou of production ~eleclwn m 
ACT-k 1~ tre<:~led a~ a umlOnn random vcrri<:~ble with <:1 mecm 
of about 40 ms (Table 1 )_Each productwn could instead be 
rcpre~entcd a~ an accumulator with a drift rate dctem1ined 
by the match between the state of the world and the 
production's conditions. Integrating these approaches \voulcl 
provide a theory of production selection (implemented as a 
sequential sampling model! along with a theory of task 
conlroJI)mplem<:'nled as produclion rul<:'~)- The LBA would 
be a natural chmce for the ~equentlal ~amplmg model for 
three remwm: (1) it i~ t~pplicahle to ~election among two or 
more alternatives, (2'! it is more parsimonious than other 
sequential sampling models, and (3'! parameter estimation is 
efficient and mathematically tractable 

Incorporating a sequential sampling model int~ a 
cognitive architecture would prov1de a more detmled, 
formal account of the time course of production selection. 
Such rn1 <:~cc.:mml would provide <:1 rationale for change~ in 
the :;tochastic dmation of cycle time. Although such an 
account mav he unnece:;sary for modeling the PVT, 
incorporating both representational lc\·cls would be useful 
for capturing complete performance dymumcs m more 
complex tasks. Factors in multi-altemative choice tasks such 
as decision conflict and value mf1uence decis10n tunes 
(k<:Jlchli & Frrnlk. 201 ~). Ltk<:'wi~e, factor~ m ~ingle­
altemative choice tasks such as stimulu~ contf-ast and 
lumino:;ity influence deci:;ion time:;_ Pre:;ently, these effect:; 
arc difficult to explain in ACT -R_ Implementing productwn 
selection as a sequential sampling process could overcome 

these challenges 
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Abstract 

The capacity coefficient is a well-established, model-based 
measure that compares performance with multiple sources of 
information together to performance on each of those informa­
tion sources in isolation. The measure is a function across time 
and can potentially carry a large amount of infom1ation about a 
participant. In mmy applicfitions. this information has been ig­
nored, either by using qualitative assessment of the function or 
by using a single sunnnaty statistic. Recent \\'ork has demon­
strated the efficacy of dimensional reduction, particularly func­
tional principal components analysis, for extracting important 
infollil&tion about the- capacity function. We extend this work 
by applying additional te-chniques from statistical le-arning, in­
cluding K-means and hierarchical clustering to examine indi­
vidual differences in configurallearning. 

Keyword:.;: Coufigural Leu.nriug; Imli;·idual Differeuce::-; Ca­
pacity Cue1Ttcieut: Humau Iufonuati~111 Processiug Modeliug 

Introduction 
The basic goal of the capacity coefficient is to compare 
response times (RTs) with multiple sources of inform~t­
tion to RTs with a single isolated source of information 
(Townsend & Noza\\'a, 1995; Townsend & Wenger. 2004; 
Houpt & Townsend, 2012: HoupL Rhha, Mcintire, Havig, 
& Townsend 2013). There arc a number of factors that can 

change performance with increased workload, including fac­
tors such ~ts correlated processing of the sources information, 
processing strategy, and task demands. An additional factor, 
which is of less interest to the study of cognition, is the ef­
l"ed or st atislical racilil alion/inhihilion. ']'his is 11Je basic p1le­
nomenon that the fastest (slowest) sample of multiple random 
processes tends to be faster (slmverj than a sample from any 
of I he indivitlual random processes. The capacity coefficient 
controls for speed up or slow down from statistical facilita­
tion or inhibition by measuring performance relative to the 
predicted perform~mce of an unlimited cap~tcity, independent 
parallel (UCIPJ model. 

More formally, if the time to process A, t.l,_, has the cumu­
lative distribution J-A(t) = P('J.4. S r) and likewise forB, and 
A and B arc independent then the probability that neither has 
finished is: 

r:t;B(t) = PC(t >! ~md 'IB > t) 

- PCT; > 1)P(Ts > t)- (1-FA(t))(l-Fs(t)) (1) 

The capacity coefficient is a ratio measure comparing the 
observed RI s with multiple sources to the predicted perfor­
mance of the UCIP system estimated from the observed re­
sponse with only 8. single source (i.e .. Equation 1 ). This com­
parison is usually in the form of a ratio of the cumulative 

hazard functions, defined by H(t) --log) -F (t)]. 

(2) 

If A and B must be exhaustively processed (i.e., both pro­
ces~es are required to lini~h) we have a different baseline pre­
diction from the UCIP process. 

F.A.B(l) =P(TA -:;__,~mel TB -::;_1) 

~ P(lA C: t)P(l's S t) ~ fi(t)fs(t) (3) 

Using the cumulative reverse hazard function, K(t) = 

log [F(l ): . we can state the capacity coefficient for exhaustive 
tasks in a form similar to Equation 2. 

(4) 

_A.nothcr case of interest is when the target information is 
presented either alone or with either distracting or inelevant 
information. In this cotse, lhe UCIP prediction is. thai the Kl 
distribution will be the same regardless of whether or not 
there are additional, non-target sources of information pre­
sented. 

For lhe::;e single-Lotrgel, self-terminating (S'l ST) cases. theca­
pacity coefficient is defined in terms of the cumulative reverse 
hazard function. 

KA(t) 
C:;tst(f) = KA.x(t) 

In early capacity coefficient applications, the analysis \Vas 
limited to plotting the function and visually assessing the 
function in comparison ro the haseline of 1. More recently, 
Houpt and Townsend (2012) developed summm·y test statis­
tics for comparing performance to a null hypothesis of LCIP 
processing. While this stalislic is certainly an improvement 
over purely visual assessment, it loses much of the informa­
tion about the shapes of the functions. Even among partici­
pants w1m l"all inlo l11e "signitic~ml ly above baseline" category 
based on the summmy' test statistic there can a wide variety 
of functional shapes. 

Rttms, Houpt, Townseml and Endres (2(!1:1) demonstrated 
the usc of functional principal components analysis (fPCA: 
Ramsay & Silverman, 2005) for analyzing differences in the 
forms of the cap~tcity functions. fPC' A is similar to standard 
principal components analysis (PCAJ in that it is a rotation of 
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the has is space usetl ltl describe ll1e observed dat~1.. The ditTer­
cncc is that in PCA the bases arc Ycctors \Vhcrcas in fPCA the 
bases are functions. More succinctly, in PCA, the data are de­
scribed as a linear combination of orthogom.l vedors which 
arc ordered by the amount of variance in the data along that 
vector. In fPCA, the data are described as a linear combina­
tion of orthogonal l"undions (Jfif:; = 0) whid1 are ordered 
bv the amount of variance in the data ~1long that function (i.e., 
f maximizes I,~= I (f f;x1j where xk are the observed func­
tions, subjed to the constraint that J.fi.f> = (J for j < i). 

fPCA and PCA are often used to describe a dataset with 
a dimensional subspace than the originallbla by only using 
the first n bases (effectively projecting the data onto a lower 
dimensional subspacej. Each individual datum can then be 
descrihetl by its l"actor scores on those 11 bases. For exam­
ple, if Xi = aJ!I + azf: ... amf~1 where the f; arc the basis 
functions from fPCA, then we can use a low~r dimensional 
representation of X1 given by X1 ~::: a!)i + a::.Jl .. fPCA reduc­
tion C311 provide us with ~t tracLtble Yector space together with 
representative functions to describe capacity coefficient data. 
ln particular. similarity in the vector l"PCA score space cap­
tures similarity in cap~tcity function shapes, thereby providing 
a way to quantify properties of the full functions. 

Clustering 

Our present effort explores the use of two popular clustering 
methods. K-means clustering and hierarchical clustering ap­
plied to the fPC A-reduced capacity coefficients with a goal 
of systematically and quantifiably capturing pattems of simi­
larity and differences in capacity coefficients only previously 
descri])ed in qualit~ttive ways. K-means clustering refers to a 

technique in which a set of points (in any finite dimensional 
vector space) are modeled as belonging to one of K ditlerent 
clusters. The free parameters of the model are the locations 
of the center of each of the K clusters. chosen to minimize the 
Euclidean distance between eotch datum and its neotresl clus­
ter center. The number of clusters to use. K, is experimenter­
specified, either using a scree plot or comparing the ratio of 
within cluster variation to between cluster variation across 
different values of K. 

Hierarchical clustering is an alternative to the K -means ap­
pro~tch which is based on bl1ilding successively more inchl­
sive grouping of data (agglomerative) or successively divid­
ing the data into more exclusive groupings (divisive). We use 
~1. basic agglomer~tlive procedure which flrst clu~ters the clos­
est nodes. The next cluster is formed by either grouping a 
different pair of nodes which have the next smallest distance 
hetween them or hy clustering a cb.tum with the previously 
formed cluster if the distance between the datum and the clus­
ter is less then the distance bet\.veen any pair of data. This 
procedure iterates until ~t single cluster forms. 

Configura] Learning Data 

We analyz~d the data from a configura] teaming study 
by Blaha (2010) in which \Vorkload capacity qualitatively 

changed over the course of training. Conflgurallcarning is 
the process by which individual object features arc '·chunkcd 
together" or unified into a single perceptual unit. Configura} 

leaming through unitization ch<mges the perceptual represen­
tation of the objects. and Blaha and colleagues demonstrated 
that this not only changes the information processing mecha­
nisllls supporting object classification (Hi aha, 201()) hut also 
changes the supporting scalp-level neural responses (Blaha, 
Busey, & Townsend, 2009). 

The experiment entailed two categorization tasks based on 
Goldstone (2000). A conjunctive categorization t~1sk was de­
signed to require exhaustive processing of the object belong­
ing to category 1 by systematic variation oft he category 2 ob­
ject features. Mandatory exhaustive processing of this object 
encouraged participants to chunk the featmes into a single ob­
ject: thus, we expected (and previously observed) llilitizottion 
of this object. Unitization results in a reduction of percep­
tual workload and an increase in processing efficiency over 
the course of leaming, captured by capacity coefficients that 
shifted from limited to super capacity levels over training. 

A single-feature categorization task served as a baseline 
estimate for learning a single feature within objects similar 
to the conjunctive bsk. Each category in this task only con­
tained a single object, with one feature differing between the 
two objects. Thus, RTs in this task captured the speed of re­
sponding ~ts participants learned to distinguish individual vi­
sual features. Single-feature task RT distributions \Vere used 
to formulate the LCIP estimates for the capacity coefficients. 

A total of tom·teen particip~mts completed 111-14 experi­
mental sessions, including 5-7 training sessions of both the 
conjunctive and single-target categorization tasks. Each one­
hour session consisted of 1200 trials. Tn all. the sbtistical 
lcmning herein utilized 12,000-16,800 trials for each of the 
14 pat1icipants ,:_see Blaha, 2010, for full study details). 

For every day of training, four capacity coefticients were 
estim~tted for e~tch participant. First, based on the mandatory 
exhaustive stopping mle. the unitized object was examined 
with Canct(r). The complementary responses (i.e., category 
2, non-conjunctive objects) required the identi!l.c~ttion of fea­
tures unique to category 2, engaging an STSI response mle. 
Thus, learning in category 2 \Vas analyzed with C~M(l). For 
hoth Canct(t) and ('stst(f), ahsolute and rehtive capacity coef­
ficients were estimated. Absolute leaming measured changes 
in the Canu(l) with the UClP estimate derived from the first 
training day, to give ~m overall estimate of capacity improve­
ment from the start of the leaming process. Relative learn­
ing varied the UClP estimotte. to otccoLml for the single-till:gel 
discrimination lemning occurring in p~rrallel with configura! 
lemning: relative C(t) Yalues used numerators and denomina­
tors from corresponding training days. 

Figure 1 illustntes the AND capacity dat~1. for ~1.11 parlici­
pm1tS. Day 1 of training is shown in the thinnest line. and 
the last clay of training is the thickest in each plot. All par­
ticipants exhihited Canct(t) improvements over tr~dning, hut 
as Figmc 1 highlights. there was a variety of individual dif-
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Figw-e 1: AND Capacity coefficients for all participants over all training. The upper half gives the absolute C..,"1(1) data, and 
the lower half gives the relative C.,.ld(t) data. The thickness of each line indicates the training session where the thinnest lines 
are the first session and the thickest line in each plot is that participant's final day of training. Line colors indicate the K = 5 
K-means cluster assigmnenl for each Carr:J(t) curve. 

ferences observed by Blaha (2010). For example, Subject 4 exhibited a gradual improvement from limited cand (1) < 1 to 
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super Guo<i(l) > l, whereas Subjects Sand ll showed a more 
step-like shift from limited directly to super capacity. Sub­
jects 9, 3, and 12 had strong speed-accuracy trade-offs, with 
super capacity early in training at the cost of lower accuracy. 

By applying unsupervised learning 1.0 systematically deter­
mine the num bers of unique patterns in the data we can quan­
tify these verbal descript ions of the various learning pall.ems 
thai. would otherwise be merely observat ional inferences. 

K-means Clust.erlng 
For all four C(1) estimates, we considered the first 4 fl>Cs, 
creating four 4-dimensional vectOr spaces in wh ich we could 
compare the capacity data. fPCA analysis was performed 
separately for each of the four types of capacity coefficients, 
and so we first analyze the un ique components within each of 
the those C(t) classes. K-means analysis was used to identify 
the number of unique C(1) function shapes exhibited within 
each condition. 

In all conditions, K = 5 clttsl.ers of functi ons emerged. Fig­
ure 2 illustrates the five clusters for both the absolute (top) 
and relative (bottom) Cnnd(l) fl>CA score spaces, with simi­
lar results for C.,.,(!) fl>CA scores. The capacity coefficients 
plotted in Figure 2 illustrate the Can<~(t) functions representa­
tive of the centroids of each cluster. These were computed by 
x; ~ alii +a2/2+a3/3 +tL1/4 where {a,, ... ,a4} arel.he 4D 
centroid score values. 

The shapes of the centroid capacity functions (Figure 2) are 
consistent with the generally observed trends over learning. 
One clusteo· shows strict limited capacity Can<~(t) < 1 values, 
consistent with the inefficient performance early in training. 
Other clusters show mixed values above and below 1, reOect­
ing the functions in the middle of training that tend to shi ll 
from limited to unlimited to super capacity, as well as of­
ten showing non-Hat shapes (e.g., super capacity for fast RJ.'s, 
limited capacity for slow RTs). A final cluster exhibits strict 
supeo· capac ity Can<~(t) > 1 values, consistent. with paoticipants 
reaching highly efficient processing by the end of training. K­
means clustering shows that the raw capacity coefficient data 
in configura! learning can be classified into 5 fundamental 
shapes. 

Hierarchical Clustering 
For the hierarchical analysis, we mapped the functional leao11-
ing traces into a high-dimensional linear space by aggregat­
ing each participant's fPCA scores for each capacity coeffi ­
cient over all days of training. Participants exhibiting simi­
lar functionalleaming traces are represented by vectors close 
in this space. Note tl1at because fl>CA scores further repre­
sent a standardization of C(t) fw1ctions, we can map both the 
c, .. d(t) and c,,,,(t) leaming into the same high-dimens ional 
space. 

Hierarchical clustering was performed on 20-dimensional 
fPCA score space. In this space, each participant was repre­
sentee! by four vectors, one for each type of capac ity coeffi ­
cient (relative and absolute Caoo<J(t) andC..,1(t)). The 20D vee­
tors contained the four fPC weights over five days of training 

-

- O.V.Wl(Jr-6) 
- Ov.Wl(Jt:l) 

Ov.WJ(JIIJ)?) 
Ou\et' (JI:Q) 
ctow.S {tl"~ 

Figure 2: RepresentativeCnnd(t) functions for each K-mcans 
cluster in both the absolute (upper) and relative (lower) fPCA­
reduced capacity spaces. Centroid Cnnd(l) functions deter­
mined by the linear combination of tl1e centroid scores and 
the fPCs for each space. 

(the first lh•e days if a participant trained longer). Distance 
between vectors, D, was estimated wit h the Euclidean metric. 

A heatmap of D is shown in Figure 3, with the rows or­
dered according to the hierarchical clustering results. Ag­
glomerative clustering on D was performed with Ward's min­
imum variance metl10d, minimizing total within-cluster vari­
ance (Ward, 1963). 

Figure 4 depicts the dendrogram resulting from the hierar­
ch ical clustering analysis. It is immediately obvious that there 
is a clear division in fl>CA score ;;pace between the data from 
theSTST and AND conditions. The red bounding boxes illus­
trate a cut tree with four groupings. Note that increasing the 
number of groups in the cut tree fuother divided the Can<~(t) 
half of the dendrogram, leaving the C,1, 1(t) half of the den­
drogram clustered into a single group. One group contains a II 
the Cstst(l) fPCA vectors, indicating that all pruticipants ex­
hibited similar changes in c .... (1) over the course of leaming. 
The heatmap in Figure 3 illusb·ating the values of D confirms 
that all ~tst (r) fPCA scores were highly similar. 

The .AJID scores were split into three groups. Subject 9 
separates early into her own cluster (confirmed by pairwise D 
values at the high end of the range), reflecting a unique pat­
tern of AND learning different from all otl1er pruticipants. As 
illustrated in Figure 1, Subject. 9 exhibited a unique combina­
tion of an increasing, strict.ly super absolute capacity leaming 
cttrve with a U-shaped relative capacity learni ng pallern, re­
sulting from a strong speed-accuracy trade-oil 

The second AND cluster in the middle of the dendrogram 
contains the majority of the absolute C:mc~ (t) results. This in­
dicates that in the fPCA-reduced space, most participants ex­
hibited similar learn ing-based changes in their capacity coef­
ficient.s . Looking back at Figure 1, we can see the some of 
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Figw-e 3: Heatmap of Euclidean distances, D, in the 200 
fPCA scores space. The columns ru-e ordered according to 
the dendrog•·am depicted i11 the margins from t11e Wald hier­
archical clustering. Green coloriJ1g gives smaller distances, 
while white gives the largest distances. 

the similarities in their profiles based on the K-meru1s clus­
tering of the individual cw·ves. The colors in Figure 1 illus­
trate that partjcipants in this cluste•· have capacity coefficients 
landing in all 5 clusters. That is, their learn ing trajectories 
move through all the average [unction shapes illustrated in 
the absolute capacity centroid AND coefficients of Figure 2. 
This cluster also contains a subgroup of relative fPCA score 
vectors, which cluster witll each other before clustering with 
the AND vectors. 

Similarly, the fi nal AND cluster contained most ly relative 
capacity fPCA score vectors. Referring back to the K-means 
color coding for the relative capacity coeftlcients in Figure 1, 
this cluster represents those participants whose learning tra­
jectories, measw·ed by •·elat ive capacity, contain at least one 
function falling into all the capacity coeOicienl. shapes illus­
trated by the relative centroid functions in the lower part. of 
Figure 2. Again, there is a small subgroup of absolute ca­
pacity vectors tl1at clusteJ-ed into a similar pa11 of 200 fPCA­
reduced space. 

We note that the small subgroup of relati ve (absolute) ca­
pacity scores clustering with the majority of the absolute (rel ­
ative) capacity scores doesn't mean the original capacity co­
efficients were the same between these two groups. This is 
because the fPCA scores were derived separately on the two 
types of capacity measures, and the weights in the fPCA ­
reduced space refer to different fPCs. What is important is 
that the separation of these s mall subgroups from the rest of 

Figure 4: Dendrog.·am visualization of hierarchical clustering 
on 200 fPCA score vector space. TI1e red boundaries indicate 
the cut tree segmentation into group groupings. 

the data in t11eir respective conditions implies that whether 
measured in absolute terms or relative terms, configura] learn­
ing can be supported by t.wo diiicrenlleaming trends (three 
if you count the trend of Subject 9). Witll few exceptions in 
this data set, tile subgroups consist of individual p311icipants 
whose absolute md relative capacity measures clustered into 
similar portions of the fPCA -reduced space. But furt.her anal­
ysis is needed to understand how this rei ates to si rn il arit y be­
tween the fPCs and other functional measures. 
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Discussion 

In this paper we have demonstrated the use of clustering tech­
niques to explore individual dirrerences in configur:.tlleam­
ing. The capacity coefficient gives a model-based measure of 
how people are using the information sources together with­
out making specilic assumptions about the Kl distributions. 
Although the raw functions may be unwieldy for exploring 
sub-groups of participants, fPCA can be used to capture the 
imporl'-i.nt vari:.tlion across capacity functions. We then used 
standard clustering techniques to examine different perfor­
mance pattems. The cluster memberships attained with these 
methods can either he used l"or additional explor'-1.tory analy­
sis or for further comparisons with other types of datct (e.g., 
clinical diagnosis or working memory capacity). Importantly, 
clustering and other statistical learning approaches can pro­
vide principled methods for finding generalizable pattems or 
trends in individual data without losing the characteristics in 
the imlividu'-1.1 participant data, which Cilll be particularly chal­
lenging for functional or time series data. 

In previous applications of the capacity coefficient. analy­
sis had been confined to either qualitative, verbal descriptions 
of ditrerent pattems across capotcity functions (e.g., Group A 
tends to h~tve higher capacity than Group B ... ) or analysis 
of the capacity information aggregated across time using the 
st'-itistic from Houpt illld Townsend (2012). The approach pre­
sented in this paper allowed us to objectively identify the clif­
ferent pattems of configuralleaming across participants using 
the full functional information from the capacity coefficient. 
From this we are ~thle to conclude that configuralle~tming re­
quires at least five unique C(r) function shapes to describe 
all the observed stages of learning captured in C(l) functions. 
Each participant fell into one of three leaming pattems. iden­
tified by the hierarchical clustering. So while all participants 
unitized the objects in the task and showed overall increases 
in RT and impr~vements in efficiency. there were three differ­
ent trajectories through capacity coefficient functional space 
to get to that same trained end state. But this analysis also 
revealed that multiple ways of measuring cap~tcity (ahsolute 
and relative) were needed to identify these learning pattems. 

An alternative approach to extracting summary statistics 
from individual participants' RTs would be to fit a model and 
then compare model p~trameters (cf. Ridels, Donkin. Brown, 
& Heathcote, 2010). The downside to the model fitting ap­
proach is that it relies on a number of assumptions about how 
the RTs ~tre generated that are ancillary to the analysis of the 
effect of workload (and hence the degree of configuralleam­
ing). In our cmrent approach. as ·with most approaches, ancil­
lary assumptions are necessary (e.g., Euclidean distances for 
the dusterino- metrics). however these measurement assump­
tions are fa1~ less constraining with respect to the potential 
underlying processes 1h~m direct assump1iom; ahout the RT 
distributions. Clustering and other statistical teaming meth­
ods applied to the full functional C(1) data enables princi­
pled, quantified individual differences amlysis with minimal 
assumptions about the best parametric model for capturing 

the underlying cognitive processes. 
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ACT-R Adaptive Control of Thought - Rational 
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sft R for statistical computing package implementing systems factorial technology 
SFT Systems Factorial Technology 
SIMCog-JS Simplified Interfacing for Modeling Cognition - JavaScript 
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